scholarly journals Fuzzy Logic Controlled AC to AC Converter FED Three Phase P.M.S.M Drive

2019 ◽  
Vol 8 (2) ◽  
pp. 4945-4949

The study demonstrates the simulation of distinct strategies of control applicable for an AC-AC Boost-converter based on a p.m.s.mdrive for industrial automation and traction. A non varying voltage feeding a circuit of inverter with an implementation following a strategy of voltage based control, which takes into consideration of speed (mechanical) of the motor. This strategy is observed to control the voltage output of a converter on AC-DC.At the input side a boost converter is connect which incorporates an open as well as closed loop control. The controllers utilised for such conversion are PI and FLC. A VSIPMSM is modelled, simulated using a MAT Lab tool and the outcomes are compared to check the performance of both the controllers. Results predicts that there is an enhanced dynamic response in addition to an increased voltage gain for an FLC based Boost converter control rather than a PI based boost converter control..

Author(s):  
H.V.Gururaja Rao ◽  
Karuna Mudliyar ◽  
R.C. Mala

<table width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr><td valign="top" width="387"><p>Renewable energy sources are increasingly being used today and solar energy is the most readily and abundantly available energy source. Boost converters are an integral part of any solar energy system. In order to obtain maximum possible energy from the solar system multi-phase interleaved boost converters are used. This paper presents the small-signal ac modelling and closed loop control of three-phase interleaved boost converter. State–space modelling methodology has been adopted to have linearized equivalent model of the boost converter. The interleaved three-phase boost converter is averaged over its one switching period and perturbed with small ac variations and finally linearized around its quiescent point to have a small signal ac model.  Type III compensator is employed to improve the frequency response and closed loop control of three-phase boost converter. The controller design procedure is discussed in detail. The effect of right-half plane zero in non-minimum phase system and the appropriate pole-zero placements to overcome the maximum phase lag in such system is discussed. The compensated closed loop system is tested for load variations to observe the transient response.</p><p> </p></td></tr></tbody></table>


Author(s):  
William J. Emblom ◽  
Klaus J. Weinmann

This paper describes the development and implementation of closed-loop control for oval stamp forming tooling using MATLAB®’s SIMULINK® and the dSPACE®CONTROLDESK®. A traditional PID controller was used for the blank holder pressure and an advanced controller utilizing fuzzy logic combining a linear quadratic gauss controller and a bang–bang controller was used to control draw bead position. The draw beads were used to control local forces near the draw beads. The blank holder pressures were used to control both wrinkling and local forces during forming. It was shown that a complex, advanced controller could be modeled using MATLAB’s SIMULINK and implemented in DSPACE CONTROLDESK. The resulting control systems for blank holder pressures and draw beads were used to control simultaneously local punch forces and wrinkling during the forming operation thereby resulting in a complex control strategy that could be used to improve the robustness of the stamp forming processes.


Sign in / Sign up

Export Citation Format

Share Document