A New High Gain Modified Boost Converter for Renewable Energy Application with Closed Loop Control

Author(s):  
Atif Iqbal ◽  
Sheetal Gore ◽  
Pandav Kiran Maroti ◽  
Abdul Shakoor
2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.


Author(s):  
H.V.Gururaja Rao ◽  
Karuna Mudliyar ◽  
R.C. Mala

<table width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr><td valign="top" width="387"><p>Renewable energy sources are increasingly being used today and solar energy is the most readily and abundantly available energy source. Boost converters are an integral part of any solar energy system. In order to obtain maximum possible energy from the solar system multi-phase interleaved boost converters are used. This paper presents the small-signal ac modelling and closed loop control of three-phase interleaved boost converter. State–space modelling methodology has been adopted to have linearized equivalent model of the boost converter. The interleaved three-phase boost converter is averaged over its one switching period and perturbed with small ac variations and finally linearized around its quiescent point to have a small signal ac model.  Type III compensator is employed to improve the frequency response and closed loop control of three-phase boost converter. The controller design procedure is discussed in detail. The effect of right-half plane zero in non-minimum phase system and the appropriate pole-zero placements to overcome the maximum phase lag in such system is discussed. The compensated closed loop system is tested for load variations to observe the transient response.</p><p> </p></td></tr></tbody></table>


Sign in / Sign up

Export Citation Format

Share Document