scholarly journals Constrained Optimization of Linear Antenna Arrays using Novel Social Group Optimization Algorithm

2019 ◽  
Vol 8 (2S3) ◽  
pp. 1184-1187

Antenna array optimization is a major research problem in the field of electromagnetic and antenna engineering. The optimization typically involves in handling several radiation parameters like Sidelobe level (SL) and beamwidth (BW). In this paper, the linear antenna array (LAA) configuration is considered with symmetrical distribution of excitation and special distribution. The objective of the design problem considered involves in generating optimized patterns in terms of SLL and BW and check the robustness of the social group optimization algorithm (SGOA). The analysis of the design problem is carried out in terms of radiation pattern plots. The simulation is carried out in Matlab.

Author(s):  
V. V. S. S. S. Chakravarthy ◽  
P. S. R. Chowdary ◽  
Suresh Chandra Satapathy ◽  
Jaume Anguera ◽  
Aurora Andújar

2021 ◽  
Author(s):  
Ali Durmus ◽  
Rifat KURBAN ◽  
Ercan KARAKOSE

Abstract Today, the design of antenna arrays is very important in providing effective and efficient wireless communication. The purpose of antenna array synthesis is to obtain a radiation pattern with low side lobe level (SLL) at a desired half power beam width (HPBW) in far-field. The amplitude and position values ​​of the array elements can be optimized to obtain a radiation pattern with suppressed SLLs. In this paper swarm-based meta-heuristic algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Mayfly algorithm (MA) and Jellyfish Search (JS) algorithms are compared to realize optimal design of linear antenna arrays. Extensive experiments are conducted on designing 10, 16, 24 and 32-element linear arrays by determining the amplitude and positions. Experiments are repeated 30 times due to the random nature of swarm-based optimizers and statistical results show that performance of the novel algorithms, MA and JS, are better than well-known methods PSO and ABC.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D.D. Devisasi Kala ◽  
D. Thiripura Sundari

PurposeOptimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is shown by antenna researchers in finding the optimum solution for designing complex antenna arrays which are possible by optimization techniques.Design/methodology/approachDesign of antenna array is a significant electro-magnetic problem of optimization in the current era. The philosophy of optimization is to find the best solution among several available alternatives. In an antenna array, energy is wasted due to side lobe levels which can be reduced by various optimization techniques. Currently, developing optimization techniques applicable for various types of antenna arrays is focused on by researchers.FindingsIn the paper, different optimization algorithms for reducing the side lobe level of the antenna array are presented. Specifically, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), cuckoo search algorithm (CSA), invasive weed optimization (IWO), whale optimization algorithm (WOA), fruitfly optimization algorithm (FOA), firefly algorithm (FA), cat swarm optimization (CSO), dragonfly algorithm (DA), enhanced firefly algorithm (EFA) and bat flower pollinator (BFP) are the most popular optimization techniques. Various metrics such as gain enhancement, reduction of side lobe, speed of convergence and the directivity of these algorithms are discussed. Faster convergence is provided by the GA which is used for genetic operator randomization. GA provides improved efficiency of computation with the extreme optimal result as well as outperforming other algorithms of optimization in finding the best solution.Originality/valueThe originality of the paper includes a study that reveals the usage of the different antennas and their importance in various applications.


Sign in / Sign up

Export Citation Format

Share Document