scholarly journals Additive Manufacturing Technology in Orthodontic Devices Development

Traditional wires and brackets has been widely used as orthodontic devices for long time. The metal wires and brackets help to correct the position of teeth as well as fix the cavity. However, metal brace wires have quite a lot limitations. Patients wearing metal brace have many food restrictions and feel not comfortable. Brushing and flossing are required to remove the food debris frequently. Hence, clear plastic aligners have popped up recently. Since the metal brace fabrication process has associated with prolonged process time as a result of a long workflow process starting from brace mold presentation to the prosthesis execution. The growing of additive manufacturing technology make it possible to develop complex structures and shapes of dental brace. By combining 3D oral scanning, it is possible to shorten the lead time of orthodontic treatment process. This review, therefore, investigates the use of Digital Light Processing (DLP) Additive Manufacturing Technology for plastic dental brace development as a remedy to the problems associated with the traditional methods. The study reveals that it is feasible to fabricate these plastic braces utilising the DLP technology. DLP technology is affordable and arguably able to produce dental models with high levels of assurance and accuracy.

Author(s):  
Laura Daniela Vallejo Melgarejo ◽  
Jose García ◽  
Ronald G. Reifenberger ◽  
Brittany Newell

This document condenses the results obtained when 3D printing lenses and their potential use as diffraction gratings using Digital Light Processing (DLP), as an additive manufacturing technique. This project investigated the feasibility of using DLP additive manufacturing for producing custom designed lenses and gratings. DLP was identified as the preferred manufacturing technology for gratings fabrication. Diffraction gratings take advantage of the anisotropy, inherent in additive manufacturing processes, to produce a collated pattern of multiple fringes on a substrate with completely smooth surfaces. The gratings are transmissive and were manufactured with slit separations of 10, 25 and 50 μm. More than 50 samples were printed at various build angles and mechanically treated for maximum optical transparency. The variables of the irradiance equation were obtained from photographs taken with an optical microscope. These values were used to estimate theoretical irradiance patterns of a diffraction grating and compared against the experimental 3-D printed grating. The resulting patterns were found to be remarkably similar in amplitude and distance between peaks when compared to theoretical values.


2021 ◽  
Author(s):  
Alexey Pustovarenko ◽  
Beatriz Seoane ◽  
Edy Abou-Hamad ◽  
Helen E King ◽  
Bert Weckhuysen ◽  
...  

3D printing, also known as additive manufacturing technology, has greatly expanded across multiple sectors of technology replacing classical manufacturing methods by combining processing speed and high precision. The scientific interest...


2021 ◽  
Vol 723 (5) ◽  
pp. 052017
Author(s):  
V Monashkov ◽  
I Russkova ◽  
Y Logvinova ◽  
N Rumyantseva ◽  
A Uljanov

Procedia CIRP ◽  
2016 ◽  
Vol 40 ◽  
pp. 7-12 ◽  
Author(s):  
Babak Kianian ◽  
Sam Tavassoli ◽  
Tobias C. Larsson ◽  
Olaf Diegel

Sign in / Sign up

Export Citation Format

Share Document