scholarly journals Geometrical Design of a Rotor Blade for a Small Scale Horizontal Axis Wind Turbine

2019 ◽  
Vol 8 (3) ◽  
pp. 3390-3400

In the present study, Blade Element Momentum theory (BEMT) has been implemented to heuristically design a rotor blade for a 2kW Fixed Pitch Fixed Speed (FPFS) Small Scale Horizontal Axis Wind Turbine (SSHAWT). Critical geometrical properties viz. Sectional Chord ci and Twist distribution θTi for the idealized, optimized and linearized blades are analytically determined for various operating conditions. Results obtained from BEM theory demonstrate that the average sectional chord ci and twist distribution θTi of the idealized blade are 20.42% and 14.08% more in comparison with optimized blade. Additionally, the employment of linearization technique further reduced the sectional chord ci and twist distribution θTi of the idealized blade by 17.9% and 14% respectively, thus achieving a viable blade bounded by the limits of economic and manufacturing constraints. Finally, the study also reveals that the iteratively reducing blade geometry has an influential effect on the solidity of the blade that in turn affects the performance of the wind turbine.

2021 ◽  
pp. 1-16
Author(s):  
Ojing Siram ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Abstract The small-scale horizontal-axis wind turbines (SHAWTs) have emerged as the promising alternative energy resource for the off-grid electrical power generation. These turbines primarily operate at low Reynolds number, low wind speed, and low tip speed ratio conditions. Under such circumstances, the airfoil selection and blade design of a SHAWT becomes a challenging task. The present work puts forward the necessary steps starting from the aerofoil selection to the blade design and analysis by means of blade element momentum theory (BEMT) for the development of four model rotors composed of E216, SG6043, NACA63415, and NACA0012 airfoils. This analysis shows the superior performance of the model rotor with E216 airfoil in comparison to other three models. However, the subsequent wind tunnel study with the E216 model, a marginal drop in its performance due to mechanical losses has been observed.


Author(s):  
Ibtissem Barkat ◽  
Abdelouahab Benretem ◽  
Fawaz Massouh ◽  
Issam Meghlaoui ◽  
Ahlem Chebel

This article aims to study the forces applied to the rotors of horizontal axis wind turbines. The aerodynamics of a turbine are controlled by the flow around the rotor, or estimate of air charges on the rotor blades under various operating conditions and their relation to the structural dynamics of the rotor are critical for design. One of the major challenges in wind turbine aerodynamics is to predict the forces on the blade as various methods, including blade element moment theory (BEM), the approach that is naturally adapted to the simulation of the aerodynamics of wind turbines and the dynamic and models (CFD) that describes with fidelity the flow around the rotor. In our article we proposed a modeling method and a simulation of the forces applied to the horizontal axis wind rotors turbines using the application of the blade elements method to model the rotor and the vortex method of free wake modeling in order to develop a rotor model, which can be used to study wind farms. This model is intended to speed up the calculation, guaranteeing a good representation of the aerodynamic loads exerted by the wind.


Author(s):  
N. Asmuin ◽  
◽  
Basuno B. ◽  
M.F. Yaakub ◽  
N.A. Nor Salim ◽  
...  

The present work uses the method of Blade Element Momentum Theory as suggested by Hansen. The method applied to three blade models adopted from Rahgozar S. with the airfoil data used the data provided by Wood D. The wind turbine performance described in term of the thrust coefficient C_T, torque coefficient C_Q and the power coefficient C_p . These three coefficient can be deduced from the Momentum theory or from the Blade element Theory(BET). The present work found the performance coefficient derived from the Momentum theory tent to over estimate. It is suggested to used the BET formulation in presenting these three coefficients. In overall the Blade Element Momentum Theory follows the step by step as described by Hansen work well for these three blade models. However a little adjustment on the blade data is needed. To the case of two bladed horizontal axis wind


2016 ◽  
Vol 33 (3) ◽  
pp. 341-349
Author(s):  
C.-J. Bai ◽  
Y.-C. Shiah

AbstractThis paper proposes a correction method to improve the accuracy of traditional blade element momentum theory (BEMT) in predicting the mechanical power and power coefficient of horizontal-axis wind turbine (HAWT) blade. In this paper, the traditional BEMT incorporated with the Viterna-Corrigan (VC) stall/stall-delay model is proposed to improve the accuracy of power-curve prediction, by which its applicability is thus enhanced. For verification of the proposed method, three distinct types of geometries of HAWT blades subjected to different operations are studied with outcomes compared with experimental data. Two different wind turbines developed by National Renewable Energy Laboratory (NREL) were tested at constant rotational speeds in a full-scale wind tunnel to acquire performance data. As a comparative platform, another wind turbine designed by BEMT for this study was also experimented in identical environment but at variable rotational speeds. As expected, the results clearly indicate that the power-curve prediction is effectively improved by the proposed method especially in the stall region when compared with experimental data. Indeed, this study shows that the improved BEMT is an ideal means to accurately predict the power-curve used for designing an optimal HAWT rotor.


2014 ◽  
Vol 492 ◽  
pp. 106-112
Author(s):  
Ahmed Mohamed Bufares ◽  
Mohamed Salem Elmnefi

The design of blade of horizontal axis wind turbine (HAWT) has been conducted using model which developed based on blade element momentum theory. The performance of the turbine has been predicted using the same model. Moreover, the improvements of the model have been suggested. To accomplish the design and predict the performance of horizontal axis wind turbine, numerical code has been implemented; the performance of the turbine with and without improvements has been compared with published date. Based on the results presented more improvements have been suggested


Sign in / Sign up

Export Citation Format

Share Document