scholarly journals Implementing Hybrid Security Mechanism for Cloud Considering Intrusion, Sql Injection and Performance Degradation

Author(s):  
Manju Sharma ◽  
Mukesh Kumar Sharma

Considering the demand of cloud services research has considered the issues or problems related to cloud computing. Various approaches adopted by existing research have limited scope and there is need to increase the security of cloud computing environment. The issues of security threat in cloud environment are explained in this paper. There have been several security threats to cloud environment such as Intrusion, brute force, Sql injection, Trozen horse that could affect the security of cloud services. There remains issue of Un-authentic access. Moreover the identity management is becoming a great challenge. Previous researches have proposed cryptographic approach while some provided solution to hacking attempts along with unauthentic external access but these security mechanisms are not sufficient to protect the cloud. Research paper is introducing intelligent system that is capable to trace the intrusion using LSTM based training model. The model is trained in order to categorize intrusion accordingly. The focus of research is to increase the security from intrusion by providing intelligent LSTM approach. This mechanism would classify the transmission in different categories such as Dos-synflooding, MITM ARP spoofing, Mirai-Ackflooding, Mirai-Http flooding, Mirai-Hostbruteforceg, Mirai-UDP Flooding, scan hostport and Normal. Moreover research paper has focused on prevention of Sql injection attacks. In order to increase the security between sender and receiver research has also allowed two way port based hand shaking in order to transmit data more securely. The transmission would be initiated using default port but the actual transmission would be made using random port that would be set for specific time slot.

Author(s):  
Kimaya Arun Ambekar ◽  
Kamatchi R.

Cloud computing is based on years of research on various computing paradigms. It provides elasticity, which is useful in the situations of uneven ICT resources demands. As the world is moving towards digitalization, the education sector is expected to meet the pace. Acquiring and maintaining the ICT resources also necessitates a huge amount of cost. Education sector as a community can use cloud services on various levels. Though the cloud is very successfully running technology, it also shows some flaws in the area of security, privacy and trust. The research demonstrates a model in which major security areas are covered like authorization, authentication, identity management, access control, privacy, data encryption, and network security. The total idea revolves around the community cloud as university at the center and other associated colleges accessing the resources. This study uses OpenStack environment to create a complete cloud environment. The validation of the model is performed using some cases and some tools.


2020 ◽  
pp. 1499-1521
Author(s):  
Sukhpal Singh Gill ◽  
Inderveer Chana ◽  
Rajkumar Buyya

Cloud computing has transpired as a new model for managing and delivering applications as services efficiently. Convergence of cloud computing with technologies such as wireless sensor networking, Internet of Things (IoT) and Big Data analytics offers new applications' of cloud services. This paper proposes a cloud-based autonomic information system for delivering Agriculture-as-a-Service (AaaS) through the use of cloud and big data technologies. The proposed system gathers information from various users through preconfigured devices and IoT sensors and processes it in cloud using big data analytics and provides the required information to users automatically. The performance of the proposed system has been evaluated in Cloud environment and experimental results show that the proposed system offers better service and the Quality of Service (QoS) is also better in terms of QoS parameters.


2019 ◽  
Vol 11 (5) ◽  
pp. 116 ◽  
Author(s):  
Tri Hoang Vo ◽  
Woldemar Fuhrmann ◽  
Klaus-Peter Fischer-Hellmann ◽  
Steven Furnell

In recent years, enterprise applications have begun to migrate from a local hosting to a cloud provider and may have established a business-to-business relationship with each other manually. Adaptation of existing applications requires substantial implementation changes in individual architectural components. On the other hand, users may store their Personal Identifiable Information (PII) in the cloud environment so that cloud services may access and use it on demand. Even if cloud services specify their privacy policies, we cannot guarantee that they follow their policies and will not (accidentally) transfer PII to another party. In this paper, we present Identity-as-a-Service (IDaaS) as a trusted Identity and Access Management with two requirements: Firstly, IDaaS adapts trust between cloud services on demand. We move the trust relationship and identity propagation out of the application implementation and model them as a security topology. When the business comes up with a new e-commerce scenario, IDaaS uses the security topology to adapt a platform-specific security infrastructure for the given business scenario at runtime. Secondly, we protect the confidentiality of PII in federated security domains. We propose our Purpose-based Encryption to protect the disclosure of PII from intermediary entities in a business transaction and from untrusted hosts. Our solution is compliant with the General Data Protection Regulation and involves the least user interaction to prevent identity theft via the human link. The implementation can be easily adapted to existing Identity Management systems, and the performance is fast.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Anastasia Panori ◽  
Agustín González-Quel ◽  
Miguel Tavares ◽  
Dimitris Simitopoulos ◽  
Julián Arroyo

During the last decade, there has been an increased interest on cloud computing and especially on the adoption of public cloud services. The process of developing cloud-based public services or migrating existing ones to the Cloud is considered to be of particular interest—as it may require the selection of the most suitable applications as well as their transformation to fit in the new cloud environment. This paper aims at presenting the main findings of a migration process regarding smart city applications to a cloud infrastructure. First, it summarises the methodology along with the main steps followed by the cities of Agueda (Portugal), Thessaloniki (Greece) and Valladolid (Spain) in order to implement this migration process within the framework of the STORM CLOUDS project. Furthermore, it illustrates some crucial results regarding monitoring and validation aspects during the empirical application that was conducted via these pilots. These findings should be received as a helpful experience for future efforts designed by cities or other organisations that are willing to move their applications to the Cloud.


Author(s):  
K. Balaji, Et. al.

The evolution of IT led Cloud computing technology emerge as a new prototype in providing the services to its users on rented basis at any time or place. Considering the flexibility of cloud services, innumerable organizations switched their businesses to the cloud technology by setting up more data centers. Nevertheless, it has become mandatory to provide profitable execution of tasks and appropriate  resource utilization. A few approaches were outlined in literature to enhance performance, job scheduling, storage resources, QoS and load distribution. Load balancing concept permits data centers to avert over-loading or under-loading in virtual machines that as such is an issue in cloud computing domain. Consequently, it necessitate the researchers to layout and apply a proper load balancer for cloud environment. The respective study represents a view of problems and threats faced by the current load balancing techniques and make the researchers find more efficient algorithms.


Author(s):  
K. Balaji , Et. al.

The evolution of IT led Cloud computing technology emerge as a new prototype in providing the services to its users on rented basis at any time or place. Considering the flexibility of cloud services, innumerable organizations switched their businesses to the cloud technology by setting up more data centers. Nevertheless, it has become mandatory to provide profitable execution of tasks and appropriate  resource utilization. A few approaches were outlined in literature to enhance performance, job scheduling, storage resources, QoS and load distribution. Load balancing concept permits data centers to avert over-loading or under-loading in virtual machines that as such is an issue in cloud computing domain. Consequently, it necessitate the researchers to layout and apply a proper load balancer for cloud environment. The respective study represents a view of problems and threats faced by the current load balancing techniques and make the researchers find more efficient algorithms.


Author(s):  
Manoj V. Thomas ◽  
K. Chandrasekaran

Nowadays, the issue of identity and access management (IAM) has become an important research topic in cloud computing. In the distributed computing environments like cloud computing, effective authentication and authorization are essential to make sure that unauthorized users do not access the resources, thereby ensuring the confidentiality, integrity, and availability of information hosted in the cloud environment. In this chapter, the authors discuss the issue of identity and access management in cloud computing, analyzing the work carried out by others in the area. Also, various issues in the current IAM scenario in cloud computing, such as authentication, authorization, access control models, identity life cycle management, cloud identity-as-a-service, federated identity management and also, the identity and access management in the inter-cloud environment are discussed. The authors conclude this chapter discussing a few research issues in the area of identity and access management in the cloud and inter-cloud environments.


2018 ◽  
pp. 910-925
Author(s):  
Kashif Munir ◽  
Sellapan Palaniappan

Cloud computing is set of resources and services offered through the internet. Cloud services are delivered from data centers located throughout the world. Enterprises are rapidly adopting cloud services for their businesses, measures need to be developed so that organizations can be assured of security in their businesses and can choose a suitable vendor for their computing needs. In this chapter we identify the most vulnerable security threats/attacks in cloud computing, which will enable both end users and vendors to know about the key security threats associated with cloud computing and propose relevant solution directives to strengthen security in the cloud environment. This chapter also discusses secure cloud architecture for organizations to strengthen the security.


Author(s):  
Thangavel M. ◽  
Nithya S ◽  
Sindhuja R

Cloud computing is the fastest growing technology in today's world. Cloud services provide pay as go models on capacity or usage. For providing better cloud services, capacity planning is very important. Proper capacity planning will maximize efficiency and on the other side proper control over the resources will help to overcome from attacks. As the technology develops in one side, threats and vulnerabilities to security also increases on the other side. A complete analysis of Denial of Service (DOS) attacks in cloud computing and how are they done in the cloud environment and the impact of reduced capacity in cloud causes greater significance. Among all the cloud computing attacks, DOS is a major threat to the cloud environment. In this book chapter, we are going to discuss DOS attack in the cloud and its types, what are the tools used to perform DOS attack and how they are detected and prevented. Finally it deals with the measures to protect the cloud services from DOS attack and also penetration testing for DOS attack.


2021 ◽  
Vol 7 ◽  
pp. e539
Author(s):  
Arash Heidari ◽  
Nima Jafari Navimipour

Cloud computing is one of the most important computing patterns that use a pay-as-you-go manner to process data and execute applications. Therefore, numerous enterprises are migrating their applications to cloud environments. Not only do intensive applications deal with enormous quantities of data, but they also demonstrate compute-intensive properties very frequently. The dynamicity, coupled with the ambiguity between marketed resources and resource requirement queries from users, remains important issues that hamper efficient discovery in a cloud environment. Cloud service discovery becomes a complex problem because of the increase in network size and complexity. Complexity and network size keep increasing dynamically, making it a complex NP-hard problem that requires effective service discovery approaches. One of the most famous cloud service discovery methods is the Ant Colony Optimization (ACO) algorithm; however, it suffers from a load balancing problem among the discovered nodes. If the workload balance is inefficient, it limits the use of resources. This paper solved this problem by applying an Inverted Ant Colony Optimization (IACO) algorithm for load-aware service discovery in cloud computing. The IACO considers the pheromones’ repulsion instead of attraction. We design a model for service discovery in the cloud environment to overcome the traditional shortcomings. Numerical results demonstrate that the proposed mechanism can obtain an efficient service discovery method. The algorithm is simulated using a CloudSim simulator, and the result shows better performance. Reducing energy consumption, mitigate response time, and better Service Level Agreement (SLA) violation in the cloud environments are the advantages of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document