scholarly journals THE EFFECT OF IRRIGATION METHODS AND MAGNETIZATION OF WATER ON GROWTH AND YIELD OF SUNFLOWER AND WATER USE EFFICIENCY

2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Yahya & Abdul-Razaq

This experiment was carried out at the experimental farm of Field Crop Department, College of Agriculture, university of Baghdad, during two spring seasons of 2012 and 2013 to study the response of sunflower cultivar Akmar to irrigation methods, magnetized water technology on growth characteristics, yield and water use efficiency. The experiment was laid out as a split plot in randomized complete block design with three replications. Four irrigation methods were used as main plots, [farrow irrigation (I1), unfixed alternate furrow irrigation (I2), fixed alternate furrow irrigation (I3) and basin irrigation (I4)], while four levels of magnetized water (0, 1000, 2000 and 3000) Gauss were used as sub plot treatments. Results revealed that unfixed alternate furrow irrigation method (I2) did not increase the yield and growth of sunflower for both seasons but it reduces irrigation water by 40%. Yield reached 3.08 and 2.82 ton ha-1 in the two seasons respectively, were as irrigation water reduced from 425 to 255 mm per season in 2012 season and reduced from 364 to 234 mm per season in 2013th season were an increment of water use efficiency (WUE) by 63.5% and 61.4% during growing seasons respectively in comparison with full irrigation treatment (I1). Root dry weight was increased by 4.8 and 7.5%. Results displayed a positive effect of using magnetized irrigation water on all measured traits. Yield was increased by 44.0 to 43.0%, WUE increased by 45.1 to 56.0 %, root dry weight by 8.9 and 8.0%, plant height by 4.7 and 5.3%, number of leaves per plant increased by 7.8 to 4.3%, leaf area by 24.1 % to 25.8 %, stem diameter by 10.2 to 7.9% and total dry weight by 23.9 to 18.6% for both spring seasons of 2012 and 2013 respectively. Interaction relations between experiment treatments were significant in some of studded traits.

2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Yahya & Abdul-Razaq

This experiment was carried out at the experimental farm of Field Crop Department, College of Agriculture, university of Baghdad, during two spring seasons of 2012 and 2013 to study the response of quality characteristics of sunflower cultivar Akmar to the irrigation methods and water of magnetization technology and water use efficiency. The experiment was laid out as a split plot in randomized complete block design (RCBD) with three replications. Four irrigation methods were used as main plots, [Farrow irrigation (I1), unfixed alternate furrow irrigation (I2), fixed alternate furrow irrigation (I3) and basin irrigation (I4)], while four levels of magnetized water (0, 1000, 2000 and 3000) Gauss were used as sub plot treatments. The results revealed that unfixed alternate furrow irrigation method could reduce irrigation water by 40 %, and it was irrigation water reduced from 425 to 255 mm per season in 2012th season and reduced from 364 to 234mm per season in 2013 season were an increment of water use efficiency (WUE) by 63.5% and 61.4% were accrued during growing seasons respectively in comparison with full irrigation treatment (I1). The Leaves potassium content decreased by14.4 to 5.8% for both seasons respectively. No significant effect was detected between I1 and I2 in qualitative traits except reduction in oil percentage as it reaches 6.3 to 8.8% in both seasons respectively. Results displayed a positive effect of using magnetized irrigation water on all measured traits. WUE increased by 45.1 to 56 %, nitrogen leaf content by 19.6 and 4.8% , phosphor leaves content by 35.1 and 41.7%, potassium leaves content by 20.7 and 10.8%, chlorophyll content by 4.5 to 7.6%, seed oil content by 5.0 to 5.6%. Interaction relations between experiment treatments were significant in some of studded traits.


2020 ◽  
Vol 6 ◽  
pp. 127-135
Author(s):  
Ekubay Tesfay Gebreigziabher

Irrigation water availability is diminishing in many areas of the Ethiopian regions, which require many irrigators to consider deficit-irrigation strategy. This study investigated the response of maize (Zea mays L.) to moisture deficit under conventional, alternate and fixed furrow irrigation systems combined with three irrigation amounts over a two years period. The field experiment was conducted at Selekleka Agricultural Research Farm of Shire-Maitsebri Agricultural Research Center. A randomized complete block design (RCBD) with three replications was used. Irrigation depth was monitored using a calibrated 2-inch throat Parshall flume. The effects of the treatments were evaluated in terms of grain yield, dry above-ground biomass, plant height, cob length and water use efficiency. The two years combined result indicated that  net irrigation water applied in alternate furrow irrigation with full amount irrigation depth (100% ETc AFI) treatments was half (3773.5 m3/ha) than that of applied to the conventional furrow with full irrigation amount (CFI with 100% ETc) treatments (7546.9 m3/ha). Despite the very significant reduction in irrigation water used with alternate furrow irrigation (AFI), there was insignificant grain yield reduction in maize(8.31%) as compared to control treatment (CFI with100% ETc). In addition, we also obtained significantly (p<0.001) higher crop water use efficiency of 1.889 kg/m3 in alternate furrow irrigation (AFI), than that was obtained as 0.988 kg/m3 in conventional furrow irrigation (CFI). In view of the results, alternate furrow irrigation method (AFI) is taken as promising for conservation of water (3773.5 m3/ha), time (23:22'50" hours/ha), labor (217.36 USD/ha) and fuel (303.79 USD/ha) for users diverting water from the source to their fields using pump without significant trade-off in yield.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Kassu Tadesse Kassaye ◽  
Wubengeda Admasu Yilma ◽  
Mehiret Hone Fisha ◽  
Dawit Habte Haile

The benefits of water-saving techniques such as alternate furrow and deficit irrigations need to be explored to ensure food security for the ever-increasing population within the context of declining availability of irrigation water. In this regard, field experiments were conducted for 2 consecutive dry seasons in the semiarid region of southwestern Ethiopia and investigated the influence of alternate furrow irrigation method with different irrigation levels on the yield, yield components, water use efficiency, and profitability of potato production. The experiment comprised of 3 irrigation methods: (i) conventional furrow irrigation (CFI), (ii) alternate furrow irrigation (AFI), and (iii) fixed furrow irrigation (FFI) combined factorially with 3 irrigation regimes: (i) 100%, (ii) 75%, and (iii) 50% of the potato water requirement (ETC). The experiment was laid out in randomized complete block design replicated thrice. Results revealed that seasonal irrigation water applied in alternate furrows was nearly half (170 mm) of the amount supplied in every furrow (331 mm). Despite the half reduction in the total amount of water, tuber (35.68 t ha−1) and total biomass (44.37 t ha−1) yields of potato in AFI did not significantly differ from CFI (34.84 and 45.35 t ha−1, respectively). Thus, AFI improved WUE by 49% compared to CFI. Irrigating potato using 75% of ETC produced tuber yield of 35.01 t ha−1, which was equivalent with 100% of ETC (35.18 t ha−1). Irrigating alternate furrows using 25% less ETC provided the highest net return of US$74.72 for every unit investment on labor for irrigating potato. In conclusion, irrigating alternate furrows using up to 25% less ETC saved water, provided comparable yield, and enhanced WUE and economic benefit. Therefore, farmers and experts are recommended to make change to AFI with 25% deficit irrigation in the study area and other regions with limited water for potato production to improve economic, environmental, and social performance of their irrigated systems.


2021 ◽  
Vol 14 ◽  
pp. 117862212110581
Author(s):  
Gobena D. Bayisa ◽  
Tilahun Hordofa ◽  
Ketema Tezera ◽  
Abera Tesfaye ◽  
Gebeyehu Ashame ◽  
...  

Water scarcity is the major limiting factor of agricultural production and productivity in the central rift valley of Ethiopia. Best use of limited water is necessary through water conservation practices. Field experiments were conducted during the dry cropping seasons of 2016 and 2017 on clay loam soil at experimental farm of Melkassa Agricultural Research Centre to evaluate the impact of irrigated furrow methods and deficit irrigation applications on maize (Zea mays) yield and water use efficiency. The study involved three furrow irrigation methods (conventional, fixed, and alternate furrow irrigation) and three irrigation application levels (100%ETc, 75%ETc, and 50%ETc). Furrow irrigation system as main plot and irrigation levels as sub-plot were arranged in split plot design with three randomized complete blocks each year. Greatest yield was obtained under conventional furrow irrigation supplied with 100%ETc of water. Water use efficiency under the same treatment was lesser and shows no significant difference with fixed furrow irrigation and 50%ETc application. Greatest water use efficiency of maize was obtained from alternate furrow irrigation under 75%ETc application and showed no significant difference with 100%ETc application. However, grain yield reduction under 75%ETc applications was very much higher than 100%ETc application. Water saved as a result of 100ETc and 75%ETc applications were 50% and 62.5%, respectively. Therefore, scheduling irrigation time for maize in the central rift valley of Ethiopia and similar semiarid environments could be 100%ETc or 75%ETc application using alternate furrow irrigation. The 75%ETc application has an advantage over 100%ETc applications in saving more water and hence could be applied when water availability is severely limited.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


cftm ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 180061
Author(s):  
S.D. Leininger ◽  
L.J. Krutz ◽  
J.M. Sarver ◽  
J. Gore ◽  
A. Henn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document