A KINETICS AND MECHANISTIC STUDY OF THE OXIDATION OF L-ARGININE BY QDC IN DMF-WATER MEDIUM

2021 ◽  
pp. 11-12
Author(s):  
Deepika Jain ◽  
Shilpa Rathor

The present paper describes the kinetics of oxidation of l-Arginine by QDC in the presence of perchloric acid in 30% DMF-H O(v/v) medium at 2 + 40⁰C spectrophotometrically at λ =354nm. The reaction is rst order with respect to [QDC], [H ], and [substrate]. The reaction rate increased with max increasing volume percentage of DMF in reaction mixture. Michaelis- Menten type kinetic was observed with l-Arginine. The reaction rates were studied at different temperature and the activation parameters has been computed. The main product was identied as Cr (III) and 4-Guanidino buteraldehyde.

2011 ◽  
Vol 8 (4) ◽  
pp. 1728-1733 ◽  
Author(s):  
N. M. I. Alhaji ◽  
S. Sofiya Lawrence Mary

The kinetics of oxidation of isoleucine withN-bromophthalimide has been studied in perchloric acid medium potentiometrically. The reaction is of first order each in [NBP] and [amino acid] and negative fractional order in [H+]. The rate is decreased by the addition of phthalimide. A decrease in the dielectric constant of the medium increases the rate. Addition of halide ions or acrylonitrile has no effect on the kinetics. Similarly, variation of ionic strength of the medium does not affect the reaction rate. The reaction rate has been determined at different temperatures and activation parameters have been calculated. A suitable mechanism involving hypobromous acid as reactive species has been proposed.


2003 ◽  
Vol 58 (12) ◽  
pp. 1201-1205 ◽  
Author(s):  
Hesham A. A. Medien

Quinolinium dichromate (QDC) in sulfuric acid oxidizes benzaldehydes to the corresponding acids in a 50% (v/v) acetic acid-water medium. The reaction is first order each in [QDC], [substrate] and [H+]. The reaction rates have been determined at different temperatures and the activation parameters calculated. The rate decreases with an increase in the water content of the medium. The effects of substituents have been studied. A suitable mechanism is proposed.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
K. Rajalakshmi ◽  
T. Ramachandramoorthy

The kinetics of oxidation of chalcones by morpholinium chlorochromate (MCC) has been studied in 55% acetic acid-water (v/v) medium. The reaction showed unit order dependence each with respect to oxidant and catalyst and fractional order with respect to substrate and H+ion. Increased ionic strength has no effect on the reaction rate. In the case of substituted chalcones, the order with respect to substrate varies depending upon the nature of the substituent present in the ring. In general, the electron withdrawing substituents retard the reaction rate while the electron releasing substituents enhance the rate of the reaction. From the kinetic data obtained, the activation parameters have been calculated and a suitable mechanism has been proposed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
S. Shree Devi ◽  
B. Muthukumaran ◽  
P. Krishnamoorthy

Kinetics and mechanism of oxidation of substituted 5-oxoacids by sodium perborate in aqueous acetic acid medium have been studied. The reaction exhibits first order both in [perborate] and [5-oxoacid] and second order in [H+]. Variation in ionic strength has no effect on the reaction rate, while the reaction rates are enhanced on lowering the dielectric constant of the reaction medium. Electron releasing substituents in the aromatic ring accelerate the reaction rate and electron withdrawing substituents retard the reaction. The order of reactivity among the studied 5-oxoacids is p-methoxy ≫ p-methyl > p-phenyl > –H > p-chloro > p-bromo > m-nitro. The oxidation is faster than H2O2 oxidation. The formation of H2BO3+ is the reactive species of perborate in the acid medium. Activation parameters have been evaluated using Arrhenius and Eyring’s plots. A mechanism consistent with the observed kinetic data has been proposed and discussed. Based on the mechanism a suitable rate law is derived.


2016 ◽  
Vol 12 (9) ◽  
pp. 4396-4403 ◽  
Author(s):  
K Anbarasu ◽  
N. GEETHA

The kinetics and mechanism of oxidation of benzaldehyde by quinoxalinium dichromate has been studied in the presence of perchloric acid in 70 % acetic acid - water medium. The reaction follows first order with respect to benzaldehyde, quinoxalinium dichromate and fractional order with respect to perchloric acid. There is no effect on the reaction rate with increase in ionic strength of the medium by adding sodium perchlorate. The rate of reaction increases with increase in the percentage of acetic acid. The reaction does not induce the polymerization with acrylonitrile. The rate of reaction decreases with increase in the concentration of manganoussulphate. The thermodynamic and activation parameters have been calculated and a probable mechanism has been proposed.


1979 ◽  
Vol 44 (12) ◽  
pp. 3588-3594 ◽  
Author(s):  
Vladislav Holba ◽  
Olga Volárová

The oxidation kinetics of cis-bis(ethylenediamine)isothiocyanonitrocobalt(III) ion with peroxodisulphate was investigated in the medium of 0.01 M-HClO4 in dependence on the ionic strength and temperature and the reaction products were identified. Extrapolated values of thermodynamic activation parameters were determined from the temperature dependence of the rate constants extrapolated to zero ionic strength. The distance of the closest approach was estimated for the reacting ions by evaluating the primary salt effect. To elucidate the mechanism, the influence of the cyclic polyether 18-crown-6 on the reaction rate was followed.


1981 ◽  
Vol 46 (10) ◽  
pp. 2503-2508 ◽  
Author(s):  
Olga Volárová ◽  
Vladislav Holba

The kinetics of oxidation of hypophosphitopentamminechromium(III) ion with periodate was investigated as a function of the temperature, ionic strength, and concentration of perchloric acid. The reaction rate decreased with increasing ionic strength and concentration of perchloric acid. The redox reaction proper involving transfer of an oxygen atom is preceded by dissociation of hydrogen from the coordinated hypophosphite. The reactivity of the latter is compared with that of the free hypophosphite.


1986 ◽  
Vol 51 (5) ◽  
pp. 1049-1060 ◽  
Author(s):  
Oľga Vollárová ◽  
Ján Benko ◽  
Ivana Matejeková

The kinetics of oxidation in the first step was studied for coordination-bonded sulphur in the cysteinatobis(ethylenediamine)cobalt(III) and bis(ethylenediamine)mercaptoacetatocobalt(III) ions using peroxodisulphate as oxidant. The effect of the acid-base equilibria of the reactants was established based on the dependences of the rate constant and the thermodynamic activation parameters ΔH and ΔS on perchloric acid concentration. The effect of ionic strength at various perchloric acid concentrations, was examined for the two complex ions. The combined effect of perchloric acid and sodium perchlorate was investigated in water-tert-butyl alcohol and water-ethylene glycol solutions. The transfer functions were calculated from the changes in the solubility of the reactants on passing from aqueous to the mixed aqueous-nonaqueous solutions, and the role of solvation during the oxidation of the complexes by peroxodisulphate was assessed based on the dependences of the transfer functions on the nonaqueous component content of the solvent system.


1988 ◽  
Vol 53 (3) ◽  
pp. 554-562
Author(s):  
Ján Benko ◽  
Oľga Vollárová ◽  
Miroslav Kovarčík

The kinetics of oxidation of the coordinatively bonded sulphur in the cysteinato-bis(ethylenediamine)cobalt(III) and bis(ethylenediamine)mercaptoacetatocobalt(III) complexes by hydrogen peroxide to the sulphoxides was examined in HClO4 solutions (c(HClO4) = 1 – 500 mmol l-1) with a view to obtaining data characterizing the effect of the acid-base equilibria of the reactants on the reaction rate. The reaction rate was found affected particularly by the acid-base equilibrium of the oxidant, which plays a role in strongly acid solutions. The oxidation was also studied in water-methyl alcohol, water-tert-butyl alcohol and water-ethylene glycol mixtures, and the effect of the mole fraction of the nonaqueous component on the rate constant and thermodynamic activation parameters was examined.


2011 ◽  
Vol 8 (1) ◽  
pp. 159-166 ◽  
Author(s):  
N. M. I. Alhaj ◽  
A. M. Uduman Mohideen ◽  
S. Sofia Lawrence Mary

The kinetics of oxidation of (phenylthio)acetic acid (PTAA) withN-chlorosaccharin (NCSA) have been studied potentiometrically in 80:20 (v/v) acetonitrile-water medium at 298 K. The reaction is first-order each with respect to PTAA and NCSA and shows a negative dependence on [H+]. NCSA itself is shown to be the active oxidizing species. Effects of ionic strength variation, added saccharin, added acrylonitrile, added NaCl and solvent composition variation have been studied. Effect of substituents on the reaction rate has been analysed by employing various (p-sustituted phenylthio)acetic acids. The electron-releasing substituent in the phenyl ring of PTAA accelerates the reaction rate while the electron-withdrawing substituent retards the rate. The excellently linear Hammett plot yields a large negative ρ value, supporting the involvement a chlorosulphonium ion intermediate in the rate-determining step.


Sign in / Sign up

Export Citation Format

Share Document