scholarly journals CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning

Author(s):  
Marvin Chancán

<div>Visual navigation tasks in real-world environments often require both self-motion and place recognition feedback. While deep reinforcement learning has shown success in solving these perception and decision-making problems in an end-to-end manner, these algorithms require large amounts of experience to learn navigation policies from high-dimensional data, which is generally impractical for real robots due to sample complexity. In this paper, we address these problems with two main contributions. We first leverage place recognition and deep learning techniques combined with goal destination feedback to generate compact, bimodal image representations that can then be used to effectively learn control policies from a small amount of experience. Second, we present an interactive framework, CityLearn, that enables for the first time training and deployment of navigation algorithms across city-sized, realistic environments with extreme visual appearance changes. CityLearn features more than 10 benchmark datasets, often used in visual place recognition and autonomous driving research, including over 100 recorded traversals across 60 cities around the world. We evaluate our approach on two CityLearn environments, training our navigation policy on a single traversal. Results show our method can be over 2 orders of magnitude faster than when using raw images, and can also generalize across extreme visual changes including day to night and summer to winter transitions.</div>

2020 ◽  
Author(s):  
Marvin Chancán

<div>Visual navigation tasks in real-world environments often require both self-motion and place recognition feedback. While deep reinforcement learning has shown success in solving these perception and decision-making problems in an end-to-end manner, these algorithms require large amounts of experience to learn navigation policies from high-dimensional data, which is generally impractical for real robots due to sample complexity. In this paper, we address these problems with two main contributions. We first leverage place recognition and deep learning techniques combined with goal destination feedback to generate compact, bimodal image representations that can then be used to effectively learn control policies from a small amount of experience. Second, we present an interactive framework, CityLearn, that enables for the first time training and deployment of navigation algorithms across city-sized, realistic environments with extreme visual appearance changes. CityLearn features more than 10 benchmark datasets, often used in visual place recognition and autonomous driving research, including over 100 recorded traversals across 60 cities around the world. We evaluate our approach on two CityLearn environments, training our navigation policy on a single traversal. Results show our method can be over 2 orders of magnitude faster than when using raw images, and can also generalize across extreme visual changes including day to night and summer to winter transitions.</div>


2018 ◽  
Vol 8 (11) ◽  
pp. 2257 ◽  
Author(s):  
Zhiqiang Zeng ◽  
Jian Zhang ◽  
Xiaodong Wang ◽  
Yuming Chen ◽  
Chaoyang Zhu

Place recognition is one of the most fundamental topics in the computer-vision and robotics communities, where the task is to accurately and efficiently recognize the location of a given query image. Despite years of knowledge accumulated in this field, place recognition still remains an open problem due to the various ways in which the appearance of real-world places may differ. This paper presents an overview of the place-recognition literature. Since condition-invariant and viewpoint-invariant features are essential factors to long-term robust visual place-recognition systems, we start with traditional image-description methodology developed in the past, which exploits techniques from the image-retrieval field. Recently, the rapid advances of related fields, such as object detection and image classification, have inspired a new technique to improve visual place-recognition systems, that is, convolutional neural networks (CNNs). Thus, we then introduce the recent progress of visual place-recognition systems based on CNNs to automatically learn better image representations for places. Finally, we close with discussions and mention of future work on place recognition.


2021 ◽  
Vol 11 (20) ◽  
pp. 9540
Author(s):  
Baifan Chen ◽  
Xiaoting Song ◽  
Hongyu Shen ◽  
Tao Lu

A major challenge in place recognition is to be robust against viewpoint changes and appearance changes caused by self and environmental variations. Humans achieve this by recognizing objects and their relationships in the scene under different conditions. Inspired by this, we propose a hierarchical visual place recognition pipeline based on semantic-aggregation and scene understanding for the images. The pipeline contains coarse matching and fine matching. Semantic-aggregation happens in residual aggregation of visual information and semantic information in coarse matching, and semantic association of semantic edges in fine matching. Through the above two processes, we realized a robust coarse-to-fine pipeline of visual place recognition across viewpoint and condition variations. Experimental results on the benchmark datasets show that our method performs better than several state-of-the-art methods, improving the robustness against severe viewpoint changes and appearance changes while maintaining good matching-time performance. Moreover, we prove that it is possible for a computer to realize place recognition based on scene understanding.


2015 ◽  
Vol 35 (4) ◽  
pp. 334-356 ◽  
Author(s):  
Elena S. Stumm ◽  
Christopher Mei ◽  
Simon Lacroix

2021 ◽  
Vol 21 (3) ◽  
pp. 1-17
Author(s):  
Wu Chen ◽  
Yong Yu ◽  
Keke Gai ◽  
Jiamou Liu ◽  
Kim-Kwang Raymond Choo

In existing ensemble learning algorithms (e.g., random forest), each base learner’s model needs the entire dataset for sampling and training. However, this may not be practical in many real-world applications, and it incurs additional computational costs. To achieve better efficiency, we propose a decentralized framework: Multi-Agent Ensemble. The framework leverages edge computing to facilitate ensemble learning techniques by focusing on the balancing of access restrictions (small sub-dataset) and accuracy enhancement. Specifically, network edge nodes (learners) are utilized to model classifications and predictions in our framework. Data is then distributed to multiple base learners who exchange data via an interaction mechanism to achieve improved prediction. The proposed approach relies on a training model rather than conventional centralized learning. Findings from the experimental evaluations using 20 real-world datasets suggest that Multi-Agent Ensemble outperforms other ensemble approaches in terms of accuracy even though the base learners require fewer samples (i.e., significant reduction in computation costs).


2021 ◽  
Vol 6 (3) ◽  
pp. 5976-5983
Author(s):  
Maria Waheed ◽  
Michael Milford ◽  
Klaus McDonald-Maier ◽  
Shoaib Ehsan

Author(s):  
Walter Morales Alvarez ◽  
Francisco Miguel Moreno ◽  
Oscar Sipele ◽  
Nikita Smirnov ◽  
Cristina Olaverri-Monreal

Sign in / Sign up

Export Citation Format

Share Document