scholarly journals Lightweight Extended Kalman Filter for MARG Sensors Attitude Estimation

Author(s):  
Lei Jing

<div> <div> <div> <p>Low-power consumption of orientation estimation using low-cost inertial sensors are crucial for all the applications which are resource constrained critically. This paper presents a novel Lightweight quaternion-based Extended Kalman Filter (LEKF) for orientation estimation for magnetic, angular rate and gravity (MARG) sensors. In this filter, with employing the quaternion kinematic equation as the process model, we derived a simplified measurement model to create the lightweight system model for Kalman filtering, where the measurement model works efficiently and the involved computation of measurement model is reduced. It’s later proved that the proposed filter saves time consumption. Further, due to that no linearization is involved for the proposed measurement model, the good performance would be guaranteed in theory. For the experiments, a commercial sensor for data collection and an optical system to provide reference measurements of orientation, namely Vicon, are utilized to investigate the performance of the proposed filter. Evaluation for different application scenarios are considered, which primarily includes human motion capture and the drone application. Results indicate that the proposed filter provides reliable performance for both applications. What’s more, the comparison experiment shows that the proposed filter provides better performance in terms of either attitude estimation accu- racy or computational time. </p> </div> </div> </div>

2021 ◽  
Author(s):  
Lei Jing

<div> <div> <div> <p>Low-power consumption of orientation estimation using low-cost inertial sensors are crucial for all the applications which are resource constrained critically. This paper presents a novel Lightweight quaternion-based Extended Kalman Filter (LEKF) for orientation estimation for magnetic, angular rate and gravity (MARG) sensors. In this filter, with employing the quaternion kinematic equation as the process model, we derived a simplified measurement model to create the lightweight system model for Kalman filtering, where the measurement model works efficiently and the involved computation of measurement model is reduced. It’s later proved that the proposed filter saves time consumption. Further, due to that no linearization is involved for the proposed measurement model, the good performance would be guaranteed in theory. For the experiments, a commercial sensor for data collection and an optical system to provide reference measurements of orientation, namely Vicon, are utilized to investigate the performance of the proposed filter. Evaluation for different application scenarios are considered, which primarily includes human motion capture and the drone application. Results indicate that the proposed filter provides reliable performance for both applications. What’s more, the comparison experiment shows that the proposed filter provides better performance in terms of either attitude estimation accu- racy or computational time. </p> </div> </div> </div>


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Siwen Guo ◽  
Jin Wu ◽  
Zuocai Wang ◽  
Jide Qian

Orientation estimation from magnetic, angular rate, and gravity (MARG) sensor array is a key problem in mechatronic-related applications. This paper proposes a new method in which a quaternion-based Kalman filter scheme is designed. The quaternion kinematic equation is employed as the process model. With our previous contributions, we establish the measurement model of attitude quaternion from accelerometer and magnetometer, which is later proved to be the fastest (computationally) one among representative attitude determination algorithms of such sensor combination. Variance analysis is later given enabling the optimal updating of the proposed filter. The algorithm is implemented on real-world hardware where experiments are carried out to reveal the advantages of the proposed method with respect to conventional ones. The proposed approach is also validated on an unmanned aerial vehicle during a real flight. Results show that the proposed one is faster than any other Kalman-based ones and even faster than some complementary ones while the attitude estimation accuracy is maintained.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shangqiu Shan ◽  
Zhongxi Hou ◽  
Jin Wu

In this paper, a new Kalman filtering scheme is designed in order to give the optimal attitude estimation with gyroscopic data and a single vector observation. The quaternion kinematic equation is adopted as the state model while the quaternion of the attitude determination from a strapdown sensor is treated as the measurement. Derivations of the attitude solution from a single vector observation along with its variance analysis are presented. The proposed filter is named as the Single Vector Observation Linear Kalman filter (SVO-LKF). Flexible design of the filter facilitates fast execution speed with respect to other filters with linearization. Simulations and experiments are conducted in the presence of large external acceleration and magnetic distortion. The results show that, compared with representative filtering methods and attitude observers, the SVO-LKF owns the best estimation accuracy and it consumes much less time in the fusion process.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Heikki Hyyti ◽  
Arto Visala

An attitude estimation algorithm is developed using an adaptive extended Kalman filter for low-cost microelectromechanical-system (MEMS) triaxial accelerometers and gyroscopes, that is, inertial measurement units (IMUs). Although these MEMS sensors are relatively cheap, they give more inaccurate measurements than conventional high-quality gyroscopes and accelerometers. To be able to use these low-cost MEMS sensors with precision in all situations, a novel attitude estimation algorithm is proposed for fusing triaxial gyroscope and accelerometer measurements. An extended Kalman filter is implemented to estimate attitude in direction cosine matrix (DCM) formation and to calibrate gyroscope biases online. We use a variable measurement covariance for acceleration measurements to ensure robustness against temporary nongravitational accelerations, which usually induce errors when estimating attitude with ordinary algorithms. The proposed algorithm enables accurate gyroscope online calibration by using only a triaxial gyroscope and accelerometer. It outperforms comparable state-of-the-art algorithms in those cases when there are either biases in the gyroscope measurements or large temporary nongravitational accelerations present. A low-cost, temperature-based calibration method is also discussed for initially calibrating gyroscope and acceleration sensors. An open source implementation of the algorithm is also available.


2016 ◽  
Vol 2016 ◽  
pp. 1-24 ◽  
Author(s):  
Romy Budhi Widodo ◽  
Chikamune Wada

Attitude estimation is often inaccurate during highly dynamic motion due to the external acceleration. This paper proposes extended Kalman filter-based attitude estimation using a new algorithm to overcome the external acceleration. This algorithm is based on an external acceleration compensation model to be used as a modifying parameter in adjusting the measurement noise covariance matrix of the extended Kalman filter. The experiment was conducted to verify the estimation accuracy, that is, one-axis and multiple axes sensor movement. Five approaches were used to test the estimation of the attitude: (1) the KF-based model without compensating for external acceleration, (2) the proposed KF-based model which employs the external acceleration compensation model, (3) the two-step KF using weighted-based switching approach, (4) the KF-based model which uses thethreshold-basedapproach, and (5) the KF-based model which uses the threshold-based approach combined with a softened part approach. The proposed algorithm showed high effectiveness during the one-axis test. When the testing conditions employed multiple axes, the estimation accuracy increased using the proposed approach and exhibited external acceleration rejection at the right timing. The proposed algorithm has fewer parameters that need to be set at the expense of the sharpness of signal edge transition.


2012 ◽  
Vol 116 (1178) ◽  
pp. 373-389
Author(s):  
Y. Jiao ◽  
J. Wang ◽  
X. Pan ◽  
H. Zhou

Abstract The satellite attitude determination approach based on the Extended Kalman Filter (EKF) has been widely used in many real applications. However, the accuracy of this method largely depends on the fitness of measurement model. We aim to analyse the influence of measurement errors to the accuracy of EKF based attitude determination approach in this paper. The measurement errors, which are divided into structural error and nonstructural error by their influences, are analysed in principle. In the setting of the combination of star sensors and gyros, according to the property of innovation, we employ the technique of correlation test to analyse the influences of different kinds of measurement errors. Experimental results demonstrate the effectiveness of our previous analysis.


2020 ◽  
pp. 002029402091770
Author(s):  
Li Xing ◽  
Xiaowei Tu ◽  
Weixing Qian ◽  
Yang Jin ◽  
Pei Qi

The paper proposes an angular velocity fusion method of the microelectromechanical system inertial measurement unit array based on the extended Kalman filter with correlated system noises. In the proposed method, an adaptive model of the angular velocity is built according to the motion characteristics of the vehicles and it is regarded as the state equation to estimate the angular velocity. The signal model of gyroscopes and accelerometers in the microelectromechanical system inertial measurement unit array is used as the measurement equation to fuse and estimate the angular velocity. Due to the correlation of the state and measurement noises in the presented fusion model, the traditional extended Kalman filter equations are optimized, so as to accurately and reliably estimate the angular velocity. By simulating angular rates in different motion modes, such as constant and change-in-time angular rates, it is verified that the proposed method can reliably estimate angular rates, even when the angular rate has been out of the microelectromechanical system gyroscope measurement range. And results show that, compared with the traditional angular rate fusion method of microelectromechanical system inertial measurement unit array, it can estimate angular rates more accurately. Moreover, in the kinematic vehicle experiments, the performance advantage of the proposed method is also verified and the angular rate estimation accuracy can be increased by about 1.5 times compared to the traditional method.


Sign in / Sign up

Export Citation Format

Share Document