scholarly journals Analytical Modelling of Dielectric Modulated Negative Capacitance MoS2-FET for Biosensor Application

Author(s):  
Deepak Kumar Panda ◽  
Rajan Singh ◽  
Trupti Lenka ◽  
Vishal Goyal ◽  
Nour El I Boukortt ◽  
...  

In this paper, a dielectric modulated negative capacitance (NC)-MoS<sub>2</sub> field effect transistor (FET)-based biosensor is proposed for label-free detection of biomolecules such as enzymes, proteins, DNA, etc. Various reports present experimental demonstration and modelling of NC-MoS<sub>2</sub> FET, but it is never utilized as a dielectric modulated biosensor. Therefore, in this work, the modelling, characterization and sensitivity analysis of dielectric modulated NC-MoS<sub>2</sub> FET is focussed. For immobilization of biomolecules, a nanocavity is formed below the gate by etching some portion of the gate oxide material. The immobilization of biomolecules in the cavity leads to a variation of different electrostatic properties such as surface potential, threshold voltage, drain current, and subthreshold-swing (SS) which can be utilized as sensing parameters. An analytical model for the proposed biosensor is also developed in the subthreshold region by considering the properties of two-dimensional (2D) ferroelectric materials and benchmarked with TCAD device simulations. The effect of change of gate length and doping concentration on different electrical properties is also analysed to estimate the optimum value of channel doping. The results prove that the proposed device can be used for next-generation low power label-free biosensor which shows enhanced sensitivity as compared to traditional FET-based biosensors.


2021 ◽  
Author(s):  
Deepak Kumar Panda ◽  
Rajan Singh ◽  
Trupti Lenka ◽  
Vishal Goyal ◽  
Nour El I Boukortt ◽  
...  

In this paper, a dielectric modulated negative capacitance (NC)-MoS<sub>2</sub> field effect transistor (FET)-based biosensor is proposed for label-free detection of biomolecules such as enzymes, proteins, DNA, etc. Various reports present experimental demonstration and modelling of NC-MoS<sub>2</sub> FET, but it is never utilized as a dielectric modulated biosensor. Therefore, in this work, the modelling, characterization and sensitivity analysis of dielectric modulated NC-MoS<sub>2</sub> FET is focussed. For immobilization of biomolecules, a nanocavity is formed below the gate by etching some portion of the gate oxide material. The immobilization of biomolecules in the cavity leads to a variation of different electrostatic properties such as surface potential, threshold voltage, drain current, and subthreshold-swing (SS) which can be utilized as sensing parameters. An analytical model for the proposed biosensor is also developed in the subthreshold region by considering the properties of two-dimensional (2D) ferroelectric materials and benchmarked with TCAD device simulations. The effect of change of gate length and doping concentration on different electrical properties is also analysed to estimate the optimum value of channel doping. The results prove that the proposed device can be used for next-generation low power label-free biosensor which shows enhanced sensitivity as compared to traditional FET-based biosensors.



2021 ◽  
Author(s):  
DIPANJAN SEN ◽  
Arpan De ◽  
Bijoy Goswami ◽  
Sharmistha Shee ◽  
Subir Kumar Sarkar

Abstract In this work, we have examined and proposed a dielectrically modulated biosensor based on the dual trench transparent gate engineered MOSFET (DM DT GE-MOSFET) for label-free detection of biomolecules with enhanced sensitivity and efficiency. Different sensing parameters such as the ION/IOFF, threshold voltage shift have been evaluated to validate the sensing metric for the proposed device. Additionally, the SVth (Vth Sensitivity) has been also analyzed by considering the charged (positive and negative) biomolecules. In addition to this, the RF sensing parameters such as the transconductance gain and cut-off frequency have been also taken into account to provide a better insight into the sensitivity analysis of the proposed device. Furthermore, the linearity, distortion and noise immunity of the device has been evaluated to check the overall performance of the biosensor at high frequency (GHz). Moreover, the results indicate that, the proposed biosensor exhibits a SVth of 0.68 for the positively charged biomolecules at a very low drain bias (0.2 V). Therefore, the proposed device can be used as an alternative to the conventional FET-based biosensors.



2017 ◽  
Vol 250 ◽  
pp. 39-43 ◽  
Author(s):  
Taiga Ajiri ◽  
Takao Yasui ◽  
Masatoshi Maeki ◽  
Akihiko Ishida ◽  
Hirofumi Tani ◽  
...  


Sensors ◽  
2011 ◽  
Vol 11 (4) ◽  
pp. 3780-3790 ◽  
Author(s):  
Ye Tian ◽  
Wenhui Wang ◽  
Nan Wu ◽  
Xiaotian Zou ◽  
Xingwei Wang


2010 ◽  
Author(s):  
Ye Tian ◽  
Wenhui Wang ◽  
Armand Chery, Jr. ◽  
Nan Wu ◽  
Charles Guthy ◽  
...  


2020 ◽  
Vol 18 (4) ◽  
pp. 328-333
Author(s):  
Shradhya Singh ◽  
Shashi Bala ◽  
Balwant Raj ◽  
Balwinder Raj

This work has proposed a device i.e., Dielectric Modulated (DM) Junctionless Transistor which is utilizes as Label-Free (LF) electrical characteristic detection of bio-molecules. The electrical characteristics used for the detection of biomolecules are electric field, surface potential, drain current and threshold voltage (Vth). Due to immobilization of biomolecules in the cavity region, the threshold voltage change in comparison to the absence of biomolecule, which is utilizes as the sensitivity metric. The sensitivity of biomolecule detection can be enhanced by using asymmetric gate operation of the device. In asymmetric mode the degree of sensitivity is almost five times higher than that of the symmetric mode of operation.



2009 ◽  
Vol 81 (4) ◽  
pp. 1397-1403 ◽  
Author(s):  
Mustafa H. Chowdhury ◽  
Krishanu Ray ◽  
Stephen K. Gray ◽  
James Pond ◽  
Joseph R. Lakowicz


Sign in / Sign up

Export Citation Format

Share Document