scholarly journals HaS-Net: A Heal and Select Mechanism to Securely Train DNNs against Backdoor Attacks

Author(s):  
Hassan Ali ◽  
Surya Nepal ◽  
Salil S. Kanhere ◽  
Sanjay K. Jha

<div>We have witnessed the continuing arms race between backdoor attacks and the corresponding defense strategies on Deep Neural Networks (DNNs). However, most state-of-the-art defenses rely on the statistical sanitization of <i>inputs</i> or <i>latent DNN representations</i> to capture trojan behavior. In this paper, we first challenge the robustness of many recently reported defenses by introducing a novel variant of the targeted backdoor attack, called <i>low-confidence backdoor attack</i>. <i>Low-confidence attack</i> inserts the backdoor by assigning uniformly distributed probabilistic labels to the poisoned training samples, and is applicable to many practical scenarios such as Federated Learning and model-reuse cases. We evaluate our attack against five state-of-the-art defense methods, viz., STRIP, Gradient-Shaping, Februus, ULP-defense and ABS-defense, under the same threat model as assumed by the respective defenses and achieve Attack Success Rates (ASRs) of 99\%, 63.73%, 91.2%, 80% and 100%, respectively. After carefully studying the properties of the state-of-the-art attacks, including low-confidence attacks, we present <i>HaS-Net</i>, a mechanism to securely train DNNs against a number of backdoor attacks under the data-collection scenario. For this purpose, we use a reasonably small healing dataset, approximately 2% to 15% the size of training data, to heal the network at each iteration. We evaluate our defense for different datasets---Fashion-MNIST, CIFAR-10, Celebrity Face, Consumer Complaint and Urban Sound---and network architectures---MLPs, 2D-CNNs, 1D-CNNs---and against several attack configurations---standard backdoor attacks, invisible backdoor attacks, label-consistent attack and all-trojan backdoor attack, including their low-confidence variants. Our experiments show that <i>HaS-Nets</i> can decrease ASRs from over 90% to less than 15%, independent of the dataset, attack configuration and network architecture.</div>

2021 ◽  
Author(s):  
Hassan Ali ◽  
Surya Nepal ◽  
Salil S. Kanhere ◽  
Sanjay K. Jha

<div>We have witnessed the continuing arms race between backdoor attacks and the corresponding defense strategies on Deep Neural Networks (DNNs). However, most state-of-the-art defenses rely on the statistical sanitization of <i>inputs</i> or <i>latent DNN representations</i> to capture trojan behavior. In this paper, we first challenge the robustness of many recently reported defenses by introducing a novel variant of the targeted backdoor attack, called <i>low-confidence backdoor attack</i>. <i>Low-confidence attack</i> inserts the backdoor by assigning uniformly distributed probabilistic labels to the poisoned training samples, and is applicable to many practical scenarios such as Federated Learning and model-reuse cases. We evaluate our attack against five state-of-the-art defense methods, viz., STRIP, Gradient-Shaping, Februus, ULP-defense and ABS-defense, under the same threat model as assumed by the respective defenses and achieve Attack Success Rates (ASRs) of 99\%, 63.73%, 91.2%, 80% and 100%, respectively. After carefully studying the properties of the state-of-the-art attacks, including low-confidence attacks, we present <i>HaS-Net</i>, a mechanism to securely train DNNs against a number of backdoor attacks under the data-collection scenario. For this purpose, we use a reasonably small healing dataset, approximately 2% to 15% the size of training data, to heal the network at each iteration. We evaluate our defense for different datasets---Fashion-MNIST, CIFAR-10, Celebrity Face, Consumer Complaint and Urban Sound---and network architectures---MLPs, 2D-CNNs, 1D-CNNs---and against several attack configurations---standard backdoor attacks, invisible backdoor attacks, label-consistent attack and all-trojan backdoor attack, including their low-confidence variants. Our experiments show that <i>HaS-Nets</i> can decrease ASRs from over 90% to less than 15%, independent of the dataset, attack configuration and network architecture.</div>


2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Ruoxi Qin ◽  
Linyuan Wang ◽  
Wanting Yu ◽  
...  

In image classification of deep learning, adversarial examples where input is intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those researches in these networks are only for one aspect, either an attack or a defense. There is in the improvement of offensive and defensive performance, and it is difficult to promote each other in the same framework. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of the original instances and adversarial examples, especially promoting attackers and defenders to confront each other and improve their ability. For CycleAdvGAN, once the GeneratorA and D are trained, GA can generate adversarial perturbations efficiently for any instance, improving the performance of the existing attack methods, and GD can generate recovery adversarial examples to clean instances, defending against existing attack methods. We apply CycleAdvGAN under semiwhite-box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also has efficiently improved the defense ability, which made the integration of adversarial attack and defense come true. In addition, it has improved the attack effect only trained on the adversarial dataset generated by any kind of adversarial attack.


2019 ◽  
Vol 24 (1) ◽  
pp. 157-172
Author(s):  
András Sárkány ◽  
Máté Csákvári ◽  
Mike Olasz

Automatic situation understanding in videos has improved remarkably in recent years. However, state-of-the-art methods still have considerable shortcomings: they usually require training data for each object class present and may have high false positive or false negative rates, making them impractical for general applications. We study a case that has a limited goal in a narrow context and argue about the complexity of the general problem. We suggest to solve this problem by including common sense rules and by exploiting various state-of-the art deep neural networks (DNNs) as the detectors of the conditions of those rules. We want to deal with the manipulation of unknown objects at a remote table. We have two action types to be detected: `picking up an object from the table' and `putting an object onto the table' and due to remote monitoring, we consider monocular observation. We quantitatively evaluate the performance of the system on manually annotated video segments, present precision and recall scores. We also discuss issues on machine reasoning. We conclude that the proposed neural-symbolic approach a) diminishes the required size of training data and b) enables new applications where labeled data are difficult or expensive to get.


Author(s):  
Nan Wang ◽  
Xibin Zhao ◽  
Yu Jiang ◽  
Yue Gao

In many classification applications, the amount of data from different categories usually vary significantly, such as software defect predication and medical diagnosis. Under such circumstances, it is essential to propose a proper method to solve the imbalance issue among the data. However, most of the existing methods mainly focus on improving the performance of classifiers rather than searching for an appropriate way to find an effective data space for classification. In this paper, we propose a method named Iterative Metric Learning (IML) to explore the correlations among imbalance data and construct an effective data space for classification. Given the imbalance training data, it is important to select a subset of training samples for each testing data. Thus, we aim to find a more stable neighborhood for testing data using the iterative metric learning strategy. To evaluate the effectiveness of the proposed method, we have conducted experiments on two groups of dataset, i.e., the NASA Metrics Data Program (NASA) dataset and UCI Machine Learning Repository (UCI) dataset. Experimental results and comparisons with state-of-the-art methods have exhibited better performance of our proposed method.


Author(s):  
Vikas Verma ◽  
Alex Lamb ◽  
Juho Kannala ◽  
Yoshua Bengio ◽  
David Lopez-Paz

We introduce Interpolation Consistency Training (ICT), a simple and computation efficient algorithm for training Deep Neural Networks in the semi-supervised learning paradigm. ICT encourages the prediction at an interpolation of unlabeled points to be consistent with the interpolation of the predictions at those points. In classification problems, ICT moves the decision boundary to low-density regions of the data distribution. Our experiments show that ICT achieves state-of-the-art performance when applied to standard neural network architectures on the CIFAR-10 and SVHN benchmark dataset.


2018 ◽  
Author(s):  
Brian Q. Geuther ◽  
Sean P. Deats ◽  
Kai J. Fox ◽  
Steve A. Murray ◽  
Robert E. Braun ◽  
...  

AbstractThe ability to track animals accurately is critical for behavioral experiments. For video-based assays, this is often accomplished by manipulating environmental conditions to increase contrast between the animal and the background, in order to achieve proper foreground/background detection (segmentation). However, as behavioral paradigms become more sophisticated with ethologically relevant environments, the approach of modifying environmental conditions offers diminishing returns, particularly for scalable experiments. Currently, there is a need for methods to monitor behaviors over long periods of time, under dynamic environmental conditions, and in animals that are genetically and behaviorally heterogeneous. To address this need, we developed a state-of-the-art neural network-based tracker for mice, using modern machine vision techniques. We test three different neural network architectures to determine their performance on genetically diverse mice under varying environmental conditions. We find that an encoder-decoder segmentation neural network achieves high accuracy and speed with minimal training data. Furthermore, we provide a labeling interface, labeled training data, tuned hyperparameters, and a pre-trained network for the mouse behavior and neuroscience communities. This general-purpose neural network tracker can be easily extended to other experimental paradigms and even to other animals, through transfer learning, thus providing a robust, generalizable solution for biobehavioral research.


2020 ◽  
Author(s):  
Stefanie

As a student, I am learning knowledge with the help of teachers and the teacher plays a crucial role in our life. A wonderful instructor is able to teach a student with appropriate teaching materials. Therefore, in this project, I explore a teaching strategy called learning to teach (L2T) in which a teacher model could provide high-quality training samples to a student model. However, one major problem of L2T is that the teacher model will only select a subset of the training dataset as the final training data for the student. Learning to teach small-data learning strategy (L2TSDL) is proposed to solve this problem. In this strategy, the teacher model will calculate the importance score for every training sample and help students to make use of all training samples. To demonstrate the advantage of the proposed approach over L2T, I take the training of different deep neural networks (DNN) on image classification task as an exampleand show that L2TSDL could achieve good performance on both large and small dataset.


Author(s):  
Shiva Prasad Kasiviswanathan ◽  
Nina Narodytska ◽  
Hongxia Jin

Deep neural networks are powerful learning models that achieve state-of-the-art performance on many computer vision, speech, and language processing tasks. In this paper, we study a fundamental question that arises when designing deep network architectures: Given a target network architecture can we design a `smaller' network architecture that 'approximates' the operation of the target network? The question is, in part, motivated by the challenge of parameter reduction (compression) in modern deep neural networks, as the ever increasing storage and memory requirements of these networks pose a problem in resource constrained environments.In this work, we focus on deep convolutional neural network architectures, and propose a novel randomized tensor sketching technique that we utilize to develop a unified framework for approximating the operation of both the convolutional and fully connected layers. By applying the sketching technique along different tensor dimensions, we design changes to the convolutional and fully connected layers that substantially reduce the number of effective parameters in a network. We show that the resulting smaller network can be trained directly, and has a classification accuracy that is comparable to the original network.


Author(s):  
Yajie Wang ◽  
Shangbo Wu ◽  
Wenyi Jiang ◽  
Shengang Hao ◽  
Yu-an Tan ◽  
...  

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples. Adversarial examples are malicious images with visually imperceptible perturbations. While these carefully crafted perturbations restricted with tight Lp norm bounds are small, they are still easily perceivable by humans. These perturbations also have limited success rates when attacking black-box models or models with defenses like noise reduction filters. To solve these problems, we propose Demiguise Attack, crafting "unrestricted" perturbations with Perceptual Similarity. Specifically, we can create powerful and photorealistic adversarial examples by manipulating semantic information based on Perceptual Similarity. Adversarial examples we generate are friendly to the human visual system (HVS), although the perturbations are of large magnitudes. We extend widely-used attacks with our approach, enhancing adversarial effectiveness impressively while contributing to imperceptibility. Extensive experiments show that the proposed method not only outperforms various state-of-the-art attacks in terms of fooling rate, transferability, and robustness against defenses but can also improve attacks effectively. In addition, we also notice that our implementation can simulate illumination and contrast changes that occur in real-world scenarios, which will contribute to exposing the blind spots of DNNs.


Sign in / Sign up

Export Citation Format

Share Document