scholarly journals Adversarial Bandit Approach for Stand Alone RIS Operation

Author(s):  
messaoud Ahmed Ouameur ◽  
Dương Tuấn Anh Lê ◽  
Gwanggil Jeon ◽  
Felipe A.P. De Figueiredo ◽  
Daniel Massicotte

<div>Abstract— Even though, reconfigurable intelligent surfaces (RISs) are adopted in various scenarios to enable the implementation of a smart radio environment, there are still challenging issues for its real-time operation due to the need for a costly full dimensional channel estimation with offline exhaustive search or online exhaustive beamtraining. The application of the deep learning (DL) tools is favored to enable feasible solutions. In this work, we propose two low training overhead and energy efficient adversarial bandit-based schemes with outstanding performance gains compared to reference DL based reflection beamforming methods. The resulting deep learning models are also discussed using state of-the art model quality prediction trends.</div>

2021 ◽  
Author(s):  
messaoud Ahmed Ouameur ◽  
Dương Tuấn Anh Lê ◽  
Gwanggil Jeon ◽  
Felipe A.P. De Figueiredo ◽  
Daniel Massicotte

<div>Abstract— Even though, reconfigurable intelligent surfaces (RISs) are adopted in various scenarios to enable the implementation of a smart radio environment, there are still challenging issues for its real-time operation due to the need for a costly full dimensional channel estimation with offline exhaustive search or online exhaustive beamtraining. The application of the deep learning (DL) tools is favored to enable feasible solutions. In this work, we propose two low training overhead and energy efficient adversarial bandit-based schemes with outstanding performance gains compared to reference DL based reflection beamforming methods. The resulting deep learning models are also discussed using state of-the art model quality prediction trends.</div>


Author(s):  
Ioannis Prapas ◽  
Behrouz Derakhshan ◽  
Alireza Rezaei Mahdiraji ◽  
Volker Markl

AbstractDeep Learning (DL) has consistently surpassed other Machine Learning methods and achieved state-of-the-art performance in multiple cases. Several modern applications like financial and recommender systems require models that are constantly updated with fresh data. The prominent approach for keeping a DL model fresh is to trigger full retraining from scratch when enough new data are available. However, retraining large and complex DL models is time-consuming and compute-intensive. This makes full retraining costly, wasteful, and slow. In this paper, we present an approach to continuously train and deploy DL models. First, we enable continuous training through proactive training that combines samples of historical data with new streaming data. Second, we enable continuous deployment through gradient sparsification that allows us to send a small percentage of the model updates per training iteration. Our experimental results with LeNet5 on MNIST and modern DL models on CIFAR-10 show that proactive training keeps models fresh with comparable—if not superior—performance to full retraining at a fraction of the time. Combined with gradient sparsification, sparse proactive training enables very fast updates of a deployed model with arbitrarily large sparsity, reducing communication per iteration up to four orders of magnitude, with minimal—if any—losses in model quality. Sparse training, however, comes at a price; it incurs overhead on the training that depends on the size of the model and increases the training time by factors ranging from 1.25 to 3 in our experiments. Arguably, a small price to pay for successfully enabling the continuous training and deployment of large DL models.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Abstract This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


Author(s):  
Yasir Hussain ◽  
Zhiqiu Huang ◽  
Yu Zhou ◽  
Senzhang Wang

In recent years, deep learning models have shown great potential in source code modeling and analysis. Generally, deep learning-based approaches are problem-specific and data-hungry. A challenging issue of these approaches is that they require training from scratch for a different related problem. In this work, we propose a transfer learning-based approach that significantly improves the performance of deep learning-based source code models. In contrast to traditional learning paradigms, transfer learning can transfer the knowledge learned in solving one problem into another related problem. First, we present two recurrent neural network-based models RNN and GRU for the purpose of transfer learning in the domain of source code modeling. Next, via transfer learning, these pre-trained (RNN and GRU) models are used as feature extractors. Then, these extracted features are combined into attention learner for different downstream tasks. The attention learner leverages from the learned knowledge of pre-trained models and fine-tunes them for a specific downstream task. We evaluate the performance of the proposed approach with extensive experiments with the source code suggestion task. The results indicate that the proposed approach outperforms the state-of-the-art models in terms of accuracy, precision, recall and F-measure without training the models from scratch.


2020 ◽  
Vol 34 (07) ◽  
pp. 11890-11898
Author(s):  
Zhongang Qi ◽  
Saeed Khorram ◽  
Li Fuxin

Understanding and interpreting the decisions made by deep learning models is valuable in many domains. In computer vision, computing heatmaps from a deep network is a popular approach for visualizing and understanding deep networks. However, heatmaps that do not correlate with the network may mislead human, hence the performance of heatmaps in providing a faithful explanation to the underlying deep network is crucial. In this paper, we propose I-GOS, which optimizes for a heatmap so that the classification scores on the masked image would maximally decrease. The main novelty of the approach is to compute descent directions based on the integrated gradients instead of the normal gradient, which avoids local optima and speeds up convergence. Compared with previous approaches, our method can flexibly compute heatmaps at any resolution for different user needs. Extensive experiments on several benchmark datasets show that the heatmaps produced by our approach are more correlated with the decision of the underlying deep network, in comparison with other state-of-the-art approaches.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


2021 ◽  
Author(s):  
Hamid Hassanpour

In this article, State-of-the-art deep learning models are evaluated and their performances in X-ray image classification is reported.


Sign in / Sign up

Export Citation Format

Share Document