scholarly journals THE PRODUCTION OF MONOCLONAL ANTIBODIES TO TETRASACCHARIDE - SYNTHETIC ANALOGUE OF THE CAPSULAR POLYSACCHARIDE OF STREPTOCOCCUS PNEUMONIAE OF SEROTYPE 14 AND THEIR IMMUNOCHEMICAL CHARACTERIZATION

Author(s):  
I. V. Yakovleva ◽  
E. A. Kurbatova ◽  
E. A. Akhmatova ◽  
E. V. Sukhova ◽  
D. V. Yashunsky ◽  
...  

Aim. Production of monoclonal antibodies (mAb) to synthetic tetrasaccharide - repeating unit of the capsular polysaccharide (CP) of Streptococcus pneumoniae serotype 14 and their immunochemical characterization. Materials and methods. In order to generate the hybridoma producing mAb, mice were immunized with synthetic tetrasaccharide conjugated with bovine serum albumin (BSA) with following hybridization of B lymphocytes with mouse myeloma cells. Antibodies were obtained in vitro andin vivo. Immunochemical characterization of mAb to tetrasaccharide was carried out using a variety of ELISA options. Results. For the first time obtained mouse hybridoma, producing IgM to tetrasacchride. The IgM titer of anti-tetrasacharide antibodies in supernatants of clones and in the ascitic fluid of mice in ELISA detected by biotinylated tetrasaccharide and synthetic CP adsorbed on the solid phase was higher compared to the use of bacterial CP as well cover antigen. In the reaction of inhibition of the ELISA, the mAb recognized the corresponding carbohydrate epitopes of the bacterial CP of S. pneumoniae serotype 14 dissolved in the liquid phase better than tetrasaccharide ligand and synthetic CP. Conclusion. To detect mAb to tetrasaccharide in ELISA preferably to use synthetic analogues of the CP as solid phase antigens. The obtained mAb to tetrasaccharide can be used to determine the representation of the protective tetrasaccharide epitope of CP in the development of pneumococcal vaccines.

2009 ◽  
Vol 77 (4) ◽  
pp. 1502-1513 ◽  
Author(s):  
Haijun Tian ◽  
Sarah Weber ◽  
Peter Thorkildson ◽  
Thomas R. Kozel ◽  
Liise-anne Pirofski

ABSTRACT Serotype-specific antibodies to pneumococcal capsular polysaccharide (PPS) are a critical component of vaccine-mediated immunity to Streptococcus pneumoniae. In this study, we investigated the in vitro opsonophagocytic activities of three PPS-specific mouse immunoglobulin G1 monoclonal antibodies (MAbs), 1E2, 5F6, and 7A9, and determined their in vivo efficacies against intranasal challenge with WU2, a serotype 3 pneumococcal strain, in normal and immunodeficient mice. The MAbs had different in vitro activities in a pneumococcal killing assay: 7A9 enhanced killing by mouse neutrophils and J774 cells in the presence of a complement source, whereas 5F6 promoted killing in the absence, but not the presence, of complement, and 1E2 did not promote killing under any conditions. Nonetheless, all three MAbs protected normal and complement component 3-deficient mice from a lethal intranasal challenge with WU2 in passive-immunization experiments in which 10 μg of the MAbs were administered intraperitoneally before intranasal challenge. In contrast, only 1E2 protected Fcγ receptor IIB knockout (FcγRIIB KO) mice and mice that were depleted of neutrophils with the MAb RB6, whereas 7A9 and 5F6 required neutrophils and FcγRIIB to mediate protection. Conversely, 7A9 and 5F6 protected FcγR KO mice, but 1E2 did not. Hence, the efficacy of 1E2 required an activating FcγR(s), whereas 5F6 and 7A9 required the inhibitory FcγR (FcγRIIB). Taken together, our data demonstrate that both MAbs that do and do not promote pneumococcal killing in vitro can mediate protection in vivo, although their efficacies depend on different host receptors and/or components.


1995 ◽  
Vol 181 (3) ◽  
pp. 973-983 ◽  
Author(s):  
J P Dillard ◽  
M W Vandersea ◽  
J Yother

The capsular polysaccharide is the major virulence factor of Streptococcus pneumoniae. Previously, we identified and cloned a region from the S. pneumoniae chromosome specific for the production of type 3 capsular polysaccharide. Now, by sequencing the region and characterizing mutations genetically and in an in vitro capsule synthesis assay, we have assigned putative functions to the products of the type-specific genes. Using DNA from the right end of the region in mapping studies, we have obtained further evidence indicating that the capsule genes of each serotype are contained in a gene cassette located adjacent to this region. We have cloned the region flanking the left end of the cassette from the type 3 chromosome and have found that it is repeated in the S. pneumoniae chromosome. The DNA sequence and hybridization data suggest a model for recombination of the capsule gene cassettes that not only describes the replacement of capsule genes, but also suggests an explanation for binary capsule type formation, and the creation of novel capsule types.


2021 ◽  
Author(s):  
Rachelle Babb ◽  
Christopher R Doyle ◽  
Liise-anne Pirofski

The current pneumococcal capsular polysaccharide (PPS) conjugate vaccine (PCV13) is less effective against Streptococcus pneumoniae serotype 3 (ST3), which remains a major cause of pneumococcal disease and mortality. Therefore, dissecting structure-function relationships of human PPS3 antibodies may reveal characteristics of protective antibodies. Using flow cytometry, we isolated PPS3-binding memory B cells from pneumococcal vaccine recipients and generated seven human PPS3-specific monoclonal antibodies (humAbs). Five humAbs displayed ST3 opsonophagocytic activity, four induced ST3 agglutination in vitro, and four mediated both activities. For two humAbs, C10 and C27, that used the same variable heavy (VH) and light (VL) chain domains (VH3-9*01/VL2-14*03), C10 had fewer VL somatic mutations, higher PPS3 affinity, more ST3 opsonophagocytic and agglutinating activity, whilst both humAbs altered ST3 gene expression in vitro. After VL swaps, C10VH/C27VL exhibited reduced ST3 binding and agglutination, but C27VH/C10VL binding was unchanged. In C57Bl/6 mice, C10 and C27 reduced nasopharyngeal colonization with ST3 A66 and a clinical strain, B2, and prolonged survival following lethal A66 intraperitoneal infection, but only C10 protected against lethal intranasal infection with the clinical strain. Our findings, associate efficacy of PPS3-specific humAbs with ST3 agglutination and opsonophagocytic activity and reveal an unexpected role for the VL in functional activity in vitro and in vivo. These findings also provide insights that may inform antibody-based therapy and identification of surrogates of vaccine efficacy against ST3.


1998 ◽  
Vol 79 (01) ◽  
pp. 104-109 ◽  
Author(s):  
Osamu Takamiya

SummaryMurine monoclonal antibodies (designated hVII-B101/B1, hVIIDC2/D4 and hVII-DC6/3D8) directed against human factor VII (FVII) were prepared and characterized, with more extensive characterization of hVII-B101/B1 that did not bind reduced FVIIa. The immunoglobulin of the three monoclonal antibodies consisted of IgG1. These antibodies did not inhibit procoagulant activities of other vitamin K-dependent coagulation factors except FVII and did not cross-react with proteins in the immunoblotting test. hVII-DC2/D4 recognized the light chain after reduction of FVIIa with 2-mercaptoethanol, and hVIIDC6/3D8 the heavy chain. hVII-B101/B1 bound FVII without Ca2+, and possessed stronger affinity for FVII in the presence of Ca2+. The Kd for hVII-B101/B1 to FVII was 1.75 x 10–10 M in the presence of 5 mM CaCl2. The antibody inhibited the binding of FVII to tissue factor in the presence of Ca2+. hVII-B101/B1 also inhibited the activation of FX by the complex of FVIIa and tissue factor in the presence of Ca2+. Furthermore, immunoblotting revealed that hVII-B101/B1 reacted with non-reduced γ-carboxyglutaminic acid (Gla)-domainless-FVII and/or FVIIa. hVII-B101/B1 showed a similar pattern to that of non-reduced proteolytic fragments of FVII by trypsin with hVII-DC2/D4 on immunoblotting test. hVII-B101/B1 reacted differently with the FVII from the dysfunctional FVII variant, FVII Shinjo, which has a substitution of Gln for Arg at residue 79 in the first epidermal growth factor (1st EGF)-like domain (Takamiya O, et al. Haemosta 25, 89-97,1995) compared with normal FVII, when used as a solid phase-antibody for ELISA by the sandwich method. hVII-B101/B1 did not react with a series of short peptide sequences near position 79 in the first EGF-like domain on the solid-phase support for epitope scanning. These results suggested that the specific epitope of the antibody, hVII-B101/B1, was located in the three-dimensional structure near position 79 in the first EGF-like domain of human FVII.


mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Masahide Yano ◽  
Shruti Gohil ◽  
J. Robert Coleman ◽  
Catherine Manix ◽  
Liise-anne Pirofski

ABSTRACTThe use of pneumococcal capsular polysaccharide (PPS)-based vaccines has resulted in a substantial reduction in invasive pneumococcal disease. However, much remains to be learned about vaccine-mediated immunity, as seven-valent PPS-protein conjugate vaccine use in children has been associated with nonvaccine serotype replacement and 23-valent vaccine use in adults has not prevented pneumococcal pneumonia. In this report, we demonstrate that certain PPS-specific monoclonal antibodies (MAbs) enhance the transformation frequency of two differentStreptococcus pneumoniaeserotypes. This phenomenon was mediated by PPS-specific MAbs that agglutinate but do not promote opsonic effector cell killing of the homologous serotypeinvitro. Compared to the autoinducer, competence-stimulating peptide (CSP) alone, transcriptional profiling of pneumococcal gene expression after incubation with CSP and one such MAb to the PPS of serotype 3 revealed changes in the expression of competence (com)-related and bacteriocin-like peptide (blp) genes involved in pneumococcal quorum sensing. This MAb was also found to induce a nearly 2-fold increase in CSP2-mediated bacterial killing or fratricide. These observations reveal a novel, direct effect of PPS-binding MAbs on pneumococcal biology that has important implications for antibody immunity to pneumococcus in the pneumococcal vaccine era. Taken together, our data suggest heretofore unsuspected mechanisms by which PPS-specific antibodies could affect genetic exchange and bacterial viability in the absence of host cells.IMPORTANCECurrent thought holds that pneumococcal capsular polysaccharide (PPS)-binding antibodies protect against pneumococcus by inducing effector cell opsonic killing of the homologous serotype. While such antibodies are an important part of how pneumococcal vaccines protect against pneumococcal disease, PPS-specific antibodies that do not exhibit this activity but are highly protective against pneumococcus in mice have been identified. This article examines the effect of nonopsonic PPS-specific monoclonal antibodies (MAbs) on the biology ofStreptococcus pneumoniae. The results showed that in the presence of a competence-stimulating peptide (CSP), such MAbs increase the frequency of pneumococcal transformation. Further studies with one such MAb showed that it altered the expression of genes involved in quorum sensing and increased competence-induced killing or fratricide. These findings reveal a novel, previously unsuspected mechanism by which certain PPS-specific antibodies exert a direct effect on pneumococcal biology that has broad implications for bacterial clearance, genetic exchange, and antibody immunity to pneumococcus.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


Hybridoma ◽  
2000 ◽  
Vol 19 (5) ◽  
pp. 363-367 ◽  
Author(s):  
Steve Holmes ◽  
Julie A. Abrahamson ◽  
Niam Al-Mahdi ◽  
Sherin S. Abdel-Meguid ◽  
Yen Sen Ho

2005 ◽  
Vol 391 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Renu Wadhwa ◽  
Syuichi Takano ◽  
Kamaljit Kaur ◽  
Satoshi Aida ◽  
Tomoko Yaguchi ◽  
...  

Mortalin/mtHsp70 (mitochondrial Hsp70) and HSP60 (heat-shock protein 60) are heat-shock proteins that reside in multiple subcellular compartments, with mitochondria being the predominant one. In the present study, we demonstrate that the two proteins interact both in vivo and in vitro, and that the N-terminal region of mortalin is involved in these interactions. Suppression of HSP60 expression by shRNA (short hairpin RNA) plasmids caused the growth arrest of cancer cells similar to that obtained by suppression of mortalin expression by ribozymes. An overexpression of mortalin, but not of HSP60, extended the in vitro lifespan of normal fibroblasts (TIG-1). Taken together, this study for the first time delineates: (i) molecular interactions of HSP60 with mortalin; (ii) their co- and exclusive localizations in vivo; (iii) their involvement in tumorigenesis; and (iv) their functional distinction in pathways involved in senescence.


Sign in / Sign up

Export Citation Format

Share Document