scholarly journals Antibodies to Streptococcus pneumoniae Capsular Polysaccharide Enhance Pneumococcal Quorum Sensing

mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Masahide Yano ◽  
Shruti Gohil ◽  
J. Robert Coleman ◽  
Catherine Manix ◽  
Liise-anne Pirofski

ABSTRACTThe use of pneumococcal capsular polysaccharide (PPS)-based vaccines has resulted in a substantial reduction in invasive pneumococcal disease. However, much remains to be learned about vaccine-mediated immunity, as seven-valent PPS-protein conjugate vaccine use in children has been associated with nonvaccine serotype replacement and 23-valent vaccine use in adults has not prevented pneumococcal pneumonia. In this report, we demonstrate that certain PPS-specific monoclonal antibodies (MAbs) enhance the transformation frequency of two differentStreptococcus pneumoniaeserotypes. This phenomenon was mediated by PPS-specific MAbs that agglutinate but do not promote opsonic effector cell killing of the homologous serotypeinvitro. Compared to the autoinducer, competence-stimulating peptide (CSP) alone, transcriptional profiling of pneumococcal gene expression after incubation with CSP and one such MAb to the PPS of serotype 3 revealed changes in the expression of competence (com)-related and bacteriocin-like peptide (blp) genes involved in pneumococcal quorum sensing. This MAb was also found to induce a nearly 2-fold increase in CSP2-mediated bacterial killing or fratricide. These observations reveal a novel, direct effect of PPS-binding MAbs on pneumococcal biology that has important implications for antibody immunity to pneumococcus in the pneumococcal vaccine era. Taken together, our data suggest heretofore unsuspected mechanisms by which PPS-specific antibodies could affect genetic exchange and bacterial viability in the absence of host cells.IMPORTANCECurrent thought holds that pneumococcal capsular polysaccharide (PPS)-binding antibodies protect against pneumococcus by inducing effector cell opsonic killing of the homologous serotype. While such antibodies are an important part of how pneumococcal vaccines protect against pneumococcal disease, PPS-specific antibodies that do not exhibit this activity but are highly protective against pneumococcus in mice have been identified. This article examines the effect of nonopsonic PPS-specific monoclonal antibodies (MAbs) on the biology ofStreptococcus pneumoniae. The results showed that in the presence of a competence-stimulating peptide (CSP), such MAbs increase the frequency of pneumococcal transformation. Further studies with one such MAb showed that it altered the expression of genes involved in quorum sensing and increased competence-induced killing or fratricide. These findings reveal a novel, previously unsuspected mechanism by which certain PPS-specific antibodies exert a direct effect on pneumococcal biology that has broad implications for bacterial clearance, genetic exchange, and antibody immunity to pneumococcus.

mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Jorge L. Benach

ABSTRACT Antibodies have been used in a diagnostic capacity for many diseases and for identifying serotypes within single species of pathogens, notably between the multiple capsular polysaccharide serotypes ofStreptococcus pneumoniae. For many years, the functions of antibodies in infection were thought to be limited to the opsonization of microorganisms followed by phagocytosis and to the fixing of complement. The thought that antibodies could have other functions has emerged only recently. The study by Yano and coworkers from the laboratory of Liise-anne Pirofski published inmBio[M. Yano, S. Gohil, J. R. Coleman, C. Manix, and L.-A. Pirofski, mBio 2(5):e00176-11, 2011] identifies one mechanism whereby nonopsonic antibodies enhance the transformation competence of twoS. pneumoniaeserotypes, which leads to an increase in genetic exchange and bacterial variability with a resulting population reduction through fratricide. These new and revealing antibody functions will add another chapter to the burgeoning story of the diversity and versatility of the immune response to bacteria.


mBio ◽  
2021 ◽  
Author(s):  
Terry Brissac ◽  
Eriel Martínez ◽  
Katherine L. Kruckow ◽  
Ashleigh N. Riegler ◽  
Feroze Ganaie ◽  
...  

Streptococcus pneumoniae ( Spn ) is the leading cause of invasive disease. Importantly, only a subset of the 100 capsule types carried by Spn cause the majority of serious infections, suggesting that the biochemical properties of capsular polysaccharide are directly tied to virulence.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Claudia Trappetti ◽  
Lauren J. McAllister ◽  
Austen Chen ◽  
Hui Wang ◽  
Adrienne W. Paton ◽  
...  

ABSTRACT Communication between bacterial cells is crucial for the coordination of diverse cellular processes that facilitate environmental adaptation and, in the case of pathogenic species, virulence. This is achieved by the secretion and detection of small signaling molecules called autoinducers, a process termed quorum sensing. To date, the only signaling molecule recognized by both Gram-positive and Gram-negative bacteria is autoinducer 2 (AI-2), synthesized by the metabolic enzyme LuxS ( S -ribosylhomocysteine lyase) as a by-product of the activated methyl cycle. Homologues of LuxS are ubiquitous in bacteria, suggesting a key role in interspecies, as well as intraspecies, communication. Gram-negative bacteria sense and respond to AI-2 via the Lsr ABC transporter system or by the LuxP/LuxQ phosphorelay system. However, homologues of these systems are absent from Gram-positive bacteria and the AI-2 receptor is unknown. Here we show that in the major human pathogen Streptococcus pneumoniae , sensing of exogenous AI-2 is dependent on FruA, a fructose-specific phosphoenolpyruvate-phosphotransferase system that is highly conserved in Gram-positive pathogens. Importantly, AI-2 signaling via FruA enables the bacterium to utilize galactose as a carbon source and upregulates the Leloir pathway, thereby leading to increased production of capsular polysaccharide and a hypervirulent phenotype. IMPORTANCE S. pneumoniae is a Gram-positive bacterium frequently carried asymptomatically in the human nasopharynx. However, in a proportion of cases, it can spread to other sites of the body, causing life-threatening diseases that translate into massive global morbidity and mortality. Our data show that AI-2 signaling via FruA promotes the transition of the pneumococcus from colonization to invasion by facilitating the utilization of galactose, the principal sugar available in the upper respiratory tract. AI-2-mediated upregulation of Leloir pathway enzymes results in increased production of capsular polysaccharide and hypervirulence in a murine intranasal challenge model. This identifies the highly conserved FruA phosphotransferase system as a target for new antimicrobials based on the disruption of this generic quorum-sensing system.


Author(s):  
I. V. Yakovleva ◽  
E. A. Kurbatova ◽  
E. A. Akhmatova ◽  
E. V. Sukhova ◽  
D. V. Yashunsky ◽  
...  

Aim. Production of monoclonal antibodies (mAb) to synthetic tetrasaccharide - repeating unit of the capsular polysaccharide (CP) of Streptococcus pneumoniae serotype 14 and their immunochemical characterization. Materials and methods. In order to generate the hybridoma producing mAb, mice were immunized with synthetic tetrasaccharide conjugated with bovine serum albumin (BSA) with following hybridization of B lymphocytes with mouse myeloma cells. Antibodies were obtained in vitro andin vivo. Immunochemical characterization of mAb to tetrasaccharide was carried out using a variety of ELISA options. Results. For the first time obtained mouse hybridoma, producing IgM to tetrasacchride. The IgM titer of anti-tetrasacharide antibodies in supernatants of clones and in the ascitic fluid of mice in ELISA detected by biotinylated tetrasaccharide and synthetic CP adsorbed on the solid phase was higher compared to the use of bacterial CP as well cover antigen. In the reaction of inhibition of the ELISA, the mAb recognized the corresponding carbohydrate epitopes of the bacterial CP of S. pneumoniae serotype 14 dissolved in the liquid phase better than tetrasaccharide ligand and synthetic CP. Conclusion. To detect mAb to tetrasaccharide in ELISA preferably to use synthetic analogues of the CP as solid phase antigens. The obtained mAb to tetrasaccharide can be used to determine the representation of the protective tetrasaccharide epitope of CP in the development of pneumococcal vaccines.


2018 ◽  
Vol 86 (6) ◽  
Author(s):  
Jinfei Yu ◽  
Bo Li ◽  
Xiaorui Chen ◽  
Jingcai Lu ◽  
Dandan Wang ◽  
...  

ABSTRACTStreptococcus pneumoniaeis a major cause of invasive pneumococcal disease, septicemia, and meningitis that can result in high morbidity rates in children under 5 years old. The current polysaccharide-based vaccines can provide type-specific immunity, but a broad-spectrum vaccine would provide greater coverage. Therefore, developing pneumococcal-protein-based vaccines that can extend to more serum types is highly important. In this study, we vaccinated mice via the subcutaneous (s.c.) route with a systemic vaccine that is a mixture of fusion protein PsaA-PspA23 and a single protein, PspA4, with aluminum hydroxide as an adjuvant. As a comparison, mice were immunized intranasally with a mucosal vaccine that is a mixture of PspA2-PA-BLP (where PA is protein anchor and BLP is bacterium-like particle) and PspA4-PA-BLP, via the intranasal (i.n.) route. The two immunization processes were followed by challenge withStreptococcus pneumoniaebacteria from two different PspA families. Specific IgG titers in the serum and specific IgA titers in the mucosa were determined following immunizations. Bacterial loads and survival rates after challenge were compared. Both the systemic vaccine and the mucosal vaccine induced a significant increase of IgG against PspAs. Only the mucosal vaccine also induced specific IgA in the mucosa. The two vaccines provided protection, but each vaccine showed an advantage. The systemic vaccine induced higher levels of serum antibodies, whereas the mucosal vaccine limited the bacterial load in the lung and blood. Therefore, coimmunizations with the two types of vaccines may be implemented in the future.


2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Bin Chang ◽  
Masatomo Morita ◽  
Ken-ichi Lee ◽  
Makoto Ohnishi

Streptococcus pneumoniae serotype 12F rarely colonizes the nasopharynx but commonly causes invasive pneumococcal disease. Here, we report the complete genome sequence of a sequence type 4846 (ST4846) S. pneumoniae serotype 12F strain isolated from a cluster of invasive pneumococcal disease patients in Japan.


2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Ermioni Kalfopoulou ◽  
Diana Laverde ◽  
Karmela Miklic ◽  
Felipe Romero-Saavedra ◽  
Suzana Malic ◽  
...  

ABSTRACTMultidrug-resistant enterococci are major causes of hospital-acquired infections. Immunotherapy with monoclonal antibodies (MAbs) targeting bacterial antigens would be a valuable treatment option in this setting. Here, we describe the development of two MAbs through hybridoma technology that target antigens from the most clinically relevant enterococcal species. Diheteroglycan (DHG), a well-characterized capsular polysaccharide ofEnterococcus faecalis, and the secreted antigen A (SagA), an immunogenic protein fromEnterococcus faecium, are both immunogens that have been proven to raise opsonic and cross-reactive antibodies against enterococcal strains. For this purpose, a conjugated form of the native DHG with SagA was used to raise the antibodies in mice, while enzyme-linked immunosorbent assay and opsonophagocytic assay were combined in the selection process of hybridoma cells producing immunoreactive and opsonic antibodies targeting the selected antigens. From this process, two highly specific IgG1(κ) MAbs were obtained, one against the polysaccharide (DHG.01) and one against the protein (SagA.01). Both MAbs exhibited good opsonic killing against the target bacterial strains: DHG.01 showed 90% killing againstE. faecalistype 2, and SagA.01 showed 40% killing againstE. faecium11231/6. In addition, both MAbs showed cross-reactivity toward otherE. faecalisandE. faeciumstrains. The sequences from the variable regions of the heavy and light chains were reconstructed in expression vectors, and the activity of the MAbs upon expression in eukaryotic cells was confirmed with the same immunological assays. In summary, we identified two opsonic MAbs against enterococci which could be used for therapeutic or prophylactic approaches against enterococcal infections.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
M. Ammar Zafar ◽  
Alexandria J. Hammond ◽  
Shigeto Hamaguchi ◽  
Weisheng Wu ◽  
Masamitsu Kono ◽  
...  

ABSTRACTHost-to-host transmission is a necessary but poorly understood aspect of microbial pathogenesis. Herein, we screened a genomic library of mutants of the leading respiratory pathogenStreptococcus pneumoniaegenerated by mariner transposon mutagenesis (Tn-Seq) to identify genes contributing to its exit or shedding from the upper respiratory tract (URT), the limiting step in the organism’s transmission in an infant mouse model. Our analysis focused on genes affecting the bacterial surface that directly impact interactions with the host. Among the multiple factors identified was thedltlocus, which addsd-alanine onto lipoteichoic acids (LTA) and thereby increases Toll-like receptor 2-mediated inflammation and resistance to antimicrobial peptides. The more robust proinflammatory response in the presence ofd-alanylation promotes secretions that facilitate pneumococcal shedding and allows for transmission. Expression of thedltlocus is controlled by the CiaRH system, which senses cell wall stress in response to antimicrobial activity, including in response to lysozyme, the most abundant antimicrobial along the URT mucosa. Accordingly, in alysM−/−host, there was no longer an effect of thedltlocus on pneumococcal shedding. Thus, our findings demonstrate how a pathogen senses the URT milieu and then modifies its surface characteristics to take advantage of the host response for transit to another host.IMPORTANCEStreptococcus pneumoniae(the pneumococcus) is a common cause of respiratory tract and invasive infection. The overall effectiveness of immunization with the organism’s capsular polysaccharide depends on its ability to block colonization of the upper respiratory tract and thereby prevent host-to-host transmission. Because of the limited coverage of current pneumococcal vaccines, we carried out an unbiasedin vivotransposon mutagenesis screen to identify pneumococcal factors other than its capsular polysaccharide that affect transmission. One such candidate was expressed by thedltlocus, previously shown to addd-alanine onto the pneumococcal lipoteichoic acid present on the bacterial cell surface. This modification protects against host antimicrobials and augments host inflammatory responses. The latter increases secretions and bacterial shedding from the upper respiratory tract to allow for transmission. Thus, this study provides insight into a mechanism employed by the pneumococcus to successfully transit from one host to another.


2011 ◽  
Vol 79 (9) ◽  
pp. 3697-3710 ◽  
Author(s):  
L. E. Cron ◽  
K. Stol ◽  
P. Burghout ◽  
S. van Selm ◽  
E. R. Simonetti ◽  
...  

ABSTRACTStreptococcus pneumoniaeis an important human bacterial pathogen, causing such infections as pneumonia, meningitis, septicemia, and otitis media. Current capsular polysaccharide-based conjugate vaccines protect against a fraction of the over 90 serotypes known, whereas vaccines based on conserved pneumococcal proteins are considered promising broad-range alternatives. The pneumococcal genome encodes two conserved proteins of an as yet unknown function, SP1298 and SP2205, classified as DHH (Asp-His-His) subfamily 1 proteins. Here we examined their contribution to pneumococcal pathogenesis using single and double knockout mutants in three different strains: D39, TIGR4, and BHN100. Mutants lacking both SP1298 and SP2205 were severely impaired in adherence to human epithelial Detroit 562 cells. Importantly, the attenuated phenotypes were restored upon genetic complementation of the deleted genes. Single and mixed mouse models of colonization, otitis media, pneumonia, and bacteremia showed that bacterial loads in the nasopharynx, middle ears, lungs, and blood of mice infected with the mutants were significantly reduced from those of wild-type-infected mice, with an apparent additive effect upon deletion of both genes. Minor strain-specific phenotypes were observed, i.e., deletion of SP1298 affected host-cell adherence in BHN100 only, and deletion of SP2205 significantly attenuated virulence in lungs and blood in D39 and BHN100 but not TIGR4. Finally, subcutaneous vaccination with a combination of both DHH subfamily 1 proteins conferred protection to nasopharynx, lungs, and blood of mice infected with TIGR4. We conclude that SP1298 and SP2205 play a significant role at several stages of pneumococcal infection, and importantly, these proteins are potential candidates for a multicomponent protein vaccine.


Sign in / Sign up

Export Citation Format

Share Document