scholarly journals PERFORMANCE COMPARISON OF PID CONTROLLER AND FUZZY LOGIC CONTROLLER FOR WATER LEVEL CONTROL WITH APPLYING TIME DELAY

Author(s):  
Fuad ALHAJ OMAR
Author(s):  
Naser Vosoughi ◽  
Zahra Naseri

Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. With regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules ( 9 rules ) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input – output mapping based on both human knowledge (in from of Fuzzy if – then rules) and stipulated input – output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. /3/, /6/


2015 ◽  
Vol 25 (4) ◽  
pp. 429-444 ◽  
Author(s):  
Bartosz Puchalski ◽  
Kazimierz Duzinkiewicz ◽  
Tomasz Rutkowski

Abstract In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR) working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE) criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.


Author(s):  
Aarti Sahu ◽  
Laxmi Shrivastava

A wireless ad hoc network is a decentralized kind of wireless network. It is a kind of temporary Computer-to-Computer connection. It is a spontaneous network which includes mobile ad-hoc network (MANET), vehicular ad-hoc network (VANET) and Flying ad-hoc network (FANET). Mobile Ad Hoc Network (MANET) is a temporary network that can be dynamically formed to exchange information by wireless nodes or routers which may be mobile. A VANET is a sub form of MANET. It is an technology that uses vehicles as nodes in a network to make a mobile network. FANET is an ad-hoc network of flying nodes. They can fly independently or can be operated distantly. In this research paper Fuzzy based control approaches in wireless network detects & avoids congestion by developing the ad-hoc fuzzy rules as well as membership functions.In this concept, two parameters have been used as: a) Channel load b) The size of queue within intermediate nodes. These parameters constitute the input to Fuzzy logic controller. The output of Fuzzy logic control (sending rate) derives from the conjunction with Fuzzy Rules Base. The parameter used input channel load, queue length which are produce the sending rate output in fuzzy logic. This fuzzy value has been used to compare the MANET, FANET and VANET in terms of the parameters Throughput, packet loss ratio, end to end delay. The simulation results reveal that usage of Qual Net 6.1 simulator has reduced packet-loss in MANET with comparing of VANET and FANET.


Sign in / Sign up

Export Citation Format

Share Document