scholarly journals Can assimilating remotely-sensed surface soil moisture data improve root-zone soil moisture predictions in the CABLE land surface model?

2016 ◽  
Vol 20 (12) ◽  
pp. 4895-4911 ◽  
Author(s):  
Gabriëlle J. M. De Lannoy ◽  
Rolf H. Reichle

Abstract. Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.


2013 ◽  
Vol 10 (8) ◽  
pp. 11241-11291 ◽  
Author(s):  
I. Gouttevin ◽  
A. Bartsch ◽  
G. Krinner ◽  
V. Naeimi

Abstract. In this study, the combined surface status and surface soil moisture products retrieved by the ASCAT sensor within the ESA-DUE Permafrost project are compared to the hydrological outputs of the land surface model ORCHIDEE over Northern Eurasia. The objective is to derive broad conclusions as to the strengths and weaknesses of hydrological modelling and, to a minor extent, remote sensing of soil moisture over an area where data is rare and hydrological modelling is though crucial for climate and ecological applications. The spatial and temporal resolutions of the ASCAT products make them suitable for comparison with model outputs. Modelled and remotely-sensed surface frozen and unfrozen statuses agree reasonably well, which allows for a seasonal comparison between modelled and observed (liquid) surface soil moisture. The atmospheric forcing and the snow scheme of the land surface model are identified as causes of moderate model-to-data divergence in terms of surface status. For unfrozen soils, the modelled and remotely-sensed surface soil moisture signals are positively correlated over most of the study area. The correlation deteriorates in the North-Eastern Siberian regions, which is consistent with the lack of accurate model parameters and the scarcity of meteorological data. The model shows a reduced ability to capture the main seasonal dynamics and spatial patterns of observed surface soil moisture in Northern Eurasia, namely a characteristic spring surface moistening resulting from snow melt and flooding. We hypothesize that these weak performances mainly originate from the non-representation of flooding and surface ponding in the model. Further identified limitations proceed from the coarse treatment of the hydrological specificities of mountainous areas and spatial inaccuracies in the meteorological forcing in remote, North-Eastern Siberian areas. Investigations are currently underway to determine to which extent plausible inaccuracies in the satellite data could also contribute to the diagnosed model-to-data discrepancies.


2010 ◽  
Vol 14 (11) ◽  
pp. 2177-2191 ◽  
Author(s):  
C. Albergel ◽  
J.-C. Calvet ◽  
P. de Rosnay ◽  
G. Balsamo ◽  
W. Wagner ◽  
...  

Abstract. The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM) measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km) active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP), issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing) by TU-Wien (Vienna University of Technology) over a two year period (2007–2008). A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP) and the Integrated Forecasting System (IFS) analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.


2015 ◽  
Vol 2 (1) ◽  
pp. 505-535 ◽  
Author(s):  
I. Dharssi ◽  
B. Candy ◽  
P. Steinle

Abstract. Several weather forecasting agencies have developed advanced land data assimilation systems that, in principle, can analyse any model land variable. Such systems can make use of a wide variety of observation types, such as screen level (2 m above the surface) observations and satellite based measurements of surface soil moisture and skin temperature. Indirect measurements can be used and information propagated from the surface into the deeper soil layers. A key component of the system is the calculation of the linearised observation operator matrix (Jacobian matrix) which describes the link between the observations and the land surface model variables. The elements of the Jacobian matrix (Jacobians) are estimated using finite difference by performing short model forecasts with perturbed initial conditions. The calculated Jacobians show that there can be strong coupling between the screen level and the soil. The coupling between the screen level and surface soil moisture is found to be due to a number of processes including bare soil evaporation, soil thermal conductivity as well as transpiration by plants. Therefore, there is significant coupling both during the day and at night. The coupling between the screen level and root-zone soil moisture is primarily through transpiration by plants. Therefore the coupling is only significant during the day and the vertical variation of the coupling is modulated by the vegetation root depths. The calculated Jacobians that link screen level temperature to model soil temperature are found to be largest for the topmost model soil layer and become very small for the lower soil layers. These values are largest during the night and generally positive in value. It is found that the Jacobians that link observations of surface soil moisture to model soil moisture are strongly affected by the soil hydraulic conductivity. Generally, for the Joint UK Land Environment Simulator (JULES) land surface model, the coupling between the surface and root zone soil moisture is weak. Finally, the Jacobians linking observations of skin temperature to model soil temperature and moisture are calculated. These Jacobians are found to have a similar spatial pattern to the Jacobians for observations of screen level temperature. Analysis is also performed of the sensitivity of the calculated Jacobians to the magnitude of the perturbations used.


2010 ◽  
Vol 7 (4) ◽  
pp. 4291-4330 ◽  
Author(s):  
C. Albergel ◽  
J.-C. Calvet ◽  
P. de Rosnay ◽  
G. Balsamo ◽  
W. Wagner ◽  
...  

Abstract. The SMOSMANIA soil moisture network in Southwestern France is used to evaluate synthetic and remotely sensed soil moisture products. The surface soil moisture (SSM) measured in situ at 5 cm permits to evaluate synthetic SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km) active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP), issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km grid spacing) by TU-Wien (Vienna University of Technology) over a two year period (2007–2008). A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP) and the Integrated Forecasting System (IFS) analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.


2016 ◽  
Author(s):  
Gabriëlle J. M. De Lannoy ◽  
Rolf H. Reichle

Abstract. Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at 40° incidence angle from the Soil Moisture Active Passive mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations during the period 1 July 2010 to 1 May 2015 and for 187 sites across the United States. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g. increase in anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.


2006 ◽  
Vol 7 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Wade T. Crow ◽  
Emiel Van Loon

Abstract Data assimilation approaches require some type of state forecast error covariance information in order to optimally merge model predictions with observations. The ensemble Kalman filter (EnKF) dynamically derives such information through a Monte Carlo approach and the introduction of random noise in model states, fluxes, and/or forcing data. However, in land data assimilation, relatively little guidance exists concerning strategies for selecting the appropriate magnitude and/or type of introduced model noise. In addition, little is known about the sensitivity of filter prediction accuracy to (potentially) inappropriate assumptions concerning the source and magnitude of modeling error. Using a series of synthetic identical twin experiments, this analysis explores the consequences of making incorrect assumptions concerning the source and magnitude of model error on the efficiency of assimilating surface soil moisture observations to constrain deeper root-zone soil moisture predictions made by a land surface model. Results suggest that inappropriate model error assumptions can lead to circumstances in which the assimilation of surface soil moisture observations actually degrades the performance of a land surface model (relative to open-loop assimilations that lack a data assimilation component). Prospects for diagnosing such circumstances and adaptively correcting the culpable model error assumptions using filter innovations are discussed. The dual assimilation of both runoff (from streamflow) and surface soil moisture observations appears to offer a more robust assimilation framework where incorrect model error assumptions are more readily diagnosed via filter innovations.


2017 ◽  
Vol 21 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
David Fairbairn ◽  
Alina Lavinia Barbu ◽  
Adrien Napoly ◽  
Clément Albergel ◽  
Jean-François Mahfouf ◽  
...  

Abstract. This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into a land surface model using the SAFRAN–ISBA–MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) an atmospheric reanalysis (SAFRAN) over France, which forces (2) the three-layer ISBA land surface model, which then provides drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and with a subset of stations with low-anthropogenic influence, over several years. This study makes use of the A-gs version of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct shortwave and long-wave radiation by approximately 5 % averaged over France. The ISBA-A-gs model also substantially underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i) a correction of the minimum LAI model parameter for grasslands and (ii) a bias-correction of the model radiative forcing. Two data assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9 % and 18 % respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median discharge Nash efficiency by about 7 %. The poor performance of the SEKF originates from the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases in drainage and/or runoff and to insufficient corrections during winter, respectively. Possible ways to improve the model are discussed, including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous regions. The data assimilation should be advanced by accounting for model and forcing uncertainties.


Sign in / Sign up

Export Citation Format

Share Document