scholarly journals Evaluation of the time of concentration estimation methods for small rural watersheds

2014 ◽  
Vol 19 (3) ◽  
pp. 495-508 ◽  
Author(s):  
Manoj KC ◽  
Xing Fang ◽  
Young-Jae Yi ◽  
Ming-Han Li ◽  
David B. Thompson ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 58 ◽  
Author(s):  
John Perdikaris ◽  
Bahram Gharabaghi ◽  
Ramesh Rudra

Accurate modelling of flood flow hydrographs in ungauged catchments is a challenging task due to large errors in the estimation of its response time using existing empirical equations. The time of concentration (Tc) is a key catchment response time parameter needed for forecasting of the peak discharge rate and the timing of the flood event. At least eight different definitions have been presented in the literature for the time of concentration. In this study, a new definition of “Reference Tc” is presented along with a practical procedure for its estimation using readily available basin catchment characteristic parameters with the aim of standardizing this key parameter for practitioners. Nine different empirical models were calibrated and tested on nine catchments of the Credit River watershed, Ontario, Canada to determine which method would provide the most accurate prediction of the Reference Tc. The NRCS velocity method (1986) proved once again to be the most reliable and an accurate method. This study shows that the main reason for the higher accuracy of the NRCS velocity method predictions compared to the empirical equations is attributed to the inclusion of the Manning's roughness coefficient.


Methodology ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 89-99 ◽  
Author(s):  
Leslie Rutkowski ◽  
Yan Zhou

Abstract. Given a consistent interest in comparing achievement across sub-populations in international assessments such as TIMSS, PIRLS, and PISA, it is critical that sub-population achievement is estimated reliably and with sufficient precision. As such, we systematically examine the limitations to current estimation methods used by these programs. Using a simulation study along with empirical results from the 2007 cycle of TIMSS, we show that a combination of missing and misclassified data in the conditioning model induces biases in sub-population achievement estimates, the magnitude and degree to which can be readily explained by data quality. Importantly, estimated biases in sub-population achievement are limited to the conditioning variable with poor-quality data while other sub-population achievement estimates are unaffected. Findings are generally in line with theory on missing and error-prone covariates. The current research adds to a small body of literature that has noted some of the limitations to sub-population estimation.


Author(s):  
Hoang Nhu Dong ◽  
Hoang Nam Nguyen ◽  
Hoang Trong Minh ◽  
Takahiko Saba

Femtocell networks have been proposed for indoor communications as the extension of cellular networks for enhancing coverage performance. Because femtocells have small coverage radius, typically from 15 to 30 meters, a femtocell user (FU) walking at low speed can still make several femtocell-to-femtocell handovers during its connection. When performing a femtocell-to-femtocell handover, femtocell selection used to select the target handover femtocell has to be able not only to reduce unnecessary handovers and but also to support FU’s quality of service (QoS). In the paper, we propose a femtocell selection scheme for femtocell-tofemtocell handover, named Mobility Prediction and Capacity Estimation based scheme (MPCE-based scheme), which has the advantages of the mobility prediction and femtocell’s available capacity estimation methods. Performance results obtained by computer simulation show that the proposed MPCE-based scheme can reduce unnecessary femtocell-tofemtocell handovers, maintain low data delay and improve the throughput of femtocell users. DOI: 10.32913/rd-ict.vol3.no14.536


TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


2008 ◽  
Vol 128 (2) ◽  
pp. 125-130
Author(s):  
Kan Akatsu ◽  
Nobuhiro Mitomo ◽  
Shinji Wakui

2013 ◽  
Vol 133 (1) ◽  
pp. 37-44
Author(s):  
Suresh Chand Verma ◽  
Yoshiki Nakachi ◽  
Yoshihiko Wazawa ◽  
Yoko Kosaka ◽  
Takenori Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document