hall effect sensor
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 62)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Siska Desy Fatmaryanti ◽  
Umi Pratiwi ◽  
Yusro Al Hakim ◽  
Sriyono ◽  
Raden Wakhid Akhdinirwanto ◽  
...  

Author(s):  
Samuel Aidala ◽  
Zachary Eichenberger ◽  
Nickolas Chan ◽  
Kyle Wilkinson ◽  
Chinedum Okwudire

Desktop fused filament fabrication (FFF) 3D printers have been growing in popularity among hobbyist and professional users as a prototyping and low-volume manufacturing tool. One issue these printers face is the inability to determine when a defect has occurred rendering the print unusable. Several techniques have been proposed to detect such defects but many of these approaches are tailored to one specific fault (e.g., filament runout/jam), use expensive hardware such as laser distance sensors, and/or use machine vision algorithms which are sensitive to ambient conditions, and hence can be unreliable. This paper proposes a versatile, reliable, and low-cost system, named MTouch, to detect millimeter-scale defects that tend to make prints unusable. At the core of MTouch is an actuated contact probe designed using a low-power solenoid, magnet, and hall effect sensor. This sensor is used to check for the presence, or absence, of the printed object at specific locations. The MTouch probe demonstrated 100% reliability, which was significantly higher than the 74% reliability achieved using a commercially available contact probe (the BLTouch). Additionally, an algorithm was developed to automatically detect common print failures such as layer shifting, bed separation, and filament runout using the MTouch probe. The algorithm was implemented on a Raspberry Pi mini-computer via an Octoprint plug-in. In head-to-head testing against a commercially available print defect detection system (The Spaghetti Detective), the MTouch was able to detect faults 44% faster on average while only increasing the print time by 8.49%. In addition, MTouch was able to detect faults The Spaghetti Detective was unable to identify such as layer shifting and filament runout/jam.


Author(s):  
Jong-Hun Lim ◽  
Sang Min Park ◽  
Byong Jo Hyon ◽  
Joon Sung Park ◽  
Jin-Hong Kim ◽  
...  

2021 ◽  
Author(s):  
Wei-wei Zhang ◽  
Jun Xiao ◽  
Qiang Geng ◽  
Qiang Xue ◽  
Lin-rui Zhang ◽  
...  

2021 ◽  
Vol 2021 (4) ◽  
pp. 4757-4763
Author(s):  
MICHAL KELEMEN ◽  
◽  
TATIANA KELEMENOVA ◽  
MARTIN VARGA ◽  
PETER JAN SINCAK ◽  
...  

Hall effect sensor is a very frequently used sensor in mechatronic products. There is little information in the catalogue sheets about the application possibilities of this type of sensor. This article examines the configuration options of this sensor and how to use it to achieve the best measurement uncertainty and minimal hysteresis.


2021 ◽  
Author(s):  
Anand Lalwani ◽  
Ananth Saran Yalamarthy ◽  
Debbie Senesky ◽  
Maximillian Holliday ◽  
Hannah Alpert

Accurately sensing AC magnetic field signatures poses a series of challenges to commonly used Hall-effect sensors. In particular, induced voltage and lack of high-frequency spinning methods are bottlenecks in the measurement of AC magnetic fields. We describe a magnetic field measurement technique that can be implemented in two ways: 1) the current driving the Hall-effect sensor is oscillating at the same frequency as the magnetic field, and the signal is measured at the second harmonic of the magnetic field frequency, and 2) the frequency of the driving current is preset, and the measured frequency is the magnetic field frequency plus the frequency of the current. This method has potential advantages over traditional means of measuring AC magnetic fields used in power systems (e.g., motors, inverters), as it can reduce the components needed (subsequently reducing the overall cost and size) and is not frequency bandwidth limited by current spinning. The sensing technique produces no induced voltage and results in a low offset, thus preserving accuracy and precision in measurements. Experimentally, we have shown offset voltage values between 8 and 27 μT at frequencies ranging from 100 Hz to 1 kHz, validating the potential of this technique in both cases


2021 ◽  
Author(s):  
Anand Lalwani ◽  
Ananth Saran Yalamarthy ◽  
Debbie Senesky ◽  
Maximillian Holliday ◽  
Hannah Alpert

Accurately sensing AC magnetic field signatures poses a series of challenges to commonly used Hall-effect sensors. In particular, induced voltage and lack of high-frequency spinning methods are bottlenecks in the measurement of AC magnetic fields. We describe a magnetic field measurement technique that can be implemented in two ways: 1) the current driving the Hall-effect sensor is oscillating at the same frequency as the magnetic field, and the signal is measured at the second harmonic of the magnetic field frequency, and 2) the frequency of the driving current is preset, and the measured frequency is the magnetic field frequency plus the frequency of the current. This method has potential advantages over traditional means of measuring AC magnetic fields used in power systems (e.g., motors, inverters), as it can reduce the components needed (subsequently reducing the overall cost and size) and is not frequency bandwidth limited by current spinning. The sensing technique produces no induced voltage and results in a low offset, thus preserving accuracy and precision in measurements. Experimentally, we have shown offset voltage values between 8 and 27 μT at frequencies ranging from 100 Hz to 1 kHz, validating the potential of this technique in both cases


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5539
Author(s):  
Ali Azad ◽  
Jong-Jae Lee ◽  
Namgyu Kim

Hall-effect sensors are used to detect metal surface defects both experimentally and numerically. The gap between the specimen and the sensor, called the liftoff, is assumed to remain constant, while a slight misplacement of a sample may lead to incorrect measurements by the Hall-effect sensor. This paper proposes a numerical simulation method to mitigate the liftoff issue. Owing to the complexity of conducting precise finite-element analysis, rather than obtaining the induced current in the Hall sensor, only the magnetic flux leakage is obtained. Thus, to achieve a better approximation, a numerical method capable of obtaining the induced current density in the circumferential direction in terms of the inspection direction is also proposed. Signals of the conventional and proposed approximate numerical methods affected by the sensor liftoff variation were obtained and compared. For small liftoffs, both conventional and proposed numerical methods could identify notch defects, while as the liftoff increased, no defect could be identified using the conventional numerical method. Furthermore, experiments were performed using a variety of liftoff configurations. Based on the results, considering the threshold of the conventional numerical method, defects were detected for greater liftoffs, but misdetection did not occur.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 101
Author(s):  
Leonardo Acho

The main objective of this paper is to present a position control design to a DC-motor, where the set-point is externally supplied. The controller is conceived by using vibrational control theory and implemented by just processing the time derivative of a Hall-effect sensor signal. Vibrational control is robust against model uncertainties. Hence, for control design, a simple mathematical model of a DC-Motor is invoked. Then, this controller is realized by utilizing analog electronics via operational amplifiers. In the experimental set-up, one extreme of a flexible beam attached to the motor shaft, and with a permanent magnet fixed on the other end, is constructed. Therefore, the control action consists of externally manipulating the flexible beam rotational position by driving a moveable Hall-effect sensor that is located facing the magnet. The experimental platform results in a low-priced device and is useful for teaching control and electronic topics. Experimental results are evidenced to support the main paper contribution.


Sign in / Sign up

Export Citation Format

Share Document