scholarly journals DETERMINATION OF ACOUSTIC CHARACTERISTICS OF FULL-SCALE SAMPLE OF SINGLE LAYERED HONEYCOMB LINER BASED ON NUMERICAL SIMULATION

Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 182-188 ◽  
Author(s):  
Igor Khramtsov ◽  
Oleg Kustov ◽  
Vadim Palchikovskiy

The acoustic characteristics of a full-scale sample of an actual single-layer liner are determined by numerical simulation of physical processes in normal incidence interferometer. Numerical simulation is performed based on solving the unsteady Navier-Stokes equations with allowance for compressibility in three-dimensional statement. It is noted the good agreement of the acoustic characteristics of the liner sample obtained in numerical simulation and in experiment. It is shown that conducting numerical simulation on single cell sample of the liner also gives results that are in good agreement with the experiment. It allows predicting the acoustic characteristics of samples of locally reacting liners with a more complex geometry in further.

Author(s):  
Yu Nishio ◽  
Keiji Niwa ◽  
Takanobu Ogawa

Abstract Motion of liquid pouring from a beverage can is numerically studied. A liquid is poured from a can which is rotated at a prescribed angular speed. The flow is simulated by solving the unsteady three-dimensional Navier-Stokes equations. An experiment under the same condition is also carried out to validate the computational result. The result shows that, when the can is tipped, the liquid flows over the lid of the can and is once obstructed by the rim of the lid. The numerical result is in good agreement with the experimental result. The effect of condensation formed on a can surface is also considered. The effect of condensation is taken into account by adjusting a contact angle. The liquid pouring from a can trickles down along the can body. The computation reproduces these experimental observations.


Akustika ◽  
2019 ◽  
Vol 34 ◽  
pp. 30-34
Author(s):  
Igor Khramtsov ◽  
Oleg Kustov ◽  
Vadim Palchikovskiy ◽  
Roman Bulbovich

For the first time, the acoustic characteristics of a full-scale double-layer sample of acoustic liner were determined by numerical simulation of physical processes in an normal incident interferometer. The double-layer liner sample consisted of 14 honeycomb cells and 70 perforation holes. The dimensions of the honeycomb cells and perforation holes correspond to the acoustic liners used in the ducts of aircraft engines. Numerical simulation was carried out based on solution of the unsteady Navier-Stokes equations in three-dimensional formulation. A high degree of agreement of the acoustic characteristics obtained by numerical simulation with experiment was noted.


2000 ◽  
Vol 31 (1) ◽  
pp. 57-72 ◽  
Author(s):  
N. R. B. Olsen ◽  
D. K. Lysne

A three-dimensional numerical model was used to model water circulation and spatial variation of temperature in Lake Sperillen in Norway. A winter situation was simulated, with thermal stratification and ice cover. The numerical model solved the Navier-Stokes equations on a 3D unstructured non-orthogonal grid with hexahedral cells. The SIMPLE method was used for the pressure coupling and the k-ε model was used to model turbulence, with a modification for density stratification due to the vertical temperature profile. The results were compared with field measurements of the temperature in the lake, indicating the location of the water current. Reasonably good agreement was found.


2011 ◽  
Vol 3 (3) ◽  
pp. 370-388
Author(s):  
Valerio Grazioso ◽  
Carlo Scalo ◽  
Giuseppe de Felice ◽  
Carlo Meola

AbstractIn this work we introduce PRIN-3D (PRoto-code for Internal flows modeled by Navier-Stokes equations in 3-Dimensions), a new high level algebraic language (Matlab®) based code, by discussing some fundamental aspects regarding its basic solving kernel and by describing the design of an innovative advection scheme. The main focus was on designing a memory and computationally efficient code that, due to the typical conciseness of the Matlab coding language, could allow for fast and effective implementation of new models or algorithms. Innovative numerical methods are discussed in the paper. The pressure equation is derived with a quasi-segregation technique leading to an iterative scheme obtained within the framework of a global preconditioning procedure. Different levels of parallelization are obtainable by exploiting special pressure variable ordering patterns that lead to a block-structured Poisson-like matrix. Moreover, the new advection scheme has the potential of a controllable artificial diffusivity. Preliminary results are shown including a fully three-dimensional internal laminar flow evolving in a relatively complex geometry and a 3D methane-air flame simulated with the aid of libraries based on the Flamelet model.


2013 ◽  
Vol 694-697 ◽  
pp. 56-60
Author(s):  
Yue Jun Ma ◽  
Ji Tao Zhao ◽  
Yu Min Yang

In the paper, on the basis of three-dimensional Reynolds-averaged Navier-Stokes equations and the RNG κ-ε turbulence model, adopting Three-dimensional unstructured grid and pressure connection the implicit correction SIMPLEC algorithm, and using MRF model which is supported by Fluent, this paper carries out numerical simulation of the internal flow of the centrifugal pump in different operation points. According to the results of numerical simulation, this paper analyzes the bad flow phenomena of the centrifugal pump, and puts forward suggests about configuration perfected of the centrifugal pump. In addition, this paper is also predicted the experimental value of the centrifugal pump performance, which is corresponding well with the measured value.


2013 ◽  
Vol 378 ◽  
pp. 418-423
Author(s):  
Gang Liu ◽  
Jia Wu ◽  
Wei Li

The three-dimensional construct of concentration field in an oscillatory flow reactor (OFR) containing periodically spaced conic ring baffles was investigated by numerical simulation employing Reynolds-averaged Navier-Stokes equations. The computation covered a range of Oscillatory Reynolds number (Reo) from 623.32 to 3116.58 at Strouhal number (St) 0.995 and 1.99. The contour of concentration field showed that the concentration in the most part of the channel is relative uniform and a small retention area is found below the conic ring baffles, which means a region of relative poor mixing. In addition, the turbulent diffusion coefficient calculated from the simulation results implied the greater oscillatory amplitude and oscillatory frequency superimposed to the fluid, the stronger is the turbulence intensity.


Author(s):  
Jianjun Liu

This paper describes the numerical simulation of the asymmetric exhaust flows by using a 3D viscous flow solver incorporating an actuator disc blade row model. The three dimensional Reynolds-Averaged Navier-Stokes equations are solved by using the TVD Lax-Wendroff scheme. The convergence to a steady state is speeded up by using the V-cycle multigrid algorithm. Turbulence eddy viscosity is estimated by the Baldwin-Lomax model. Multiblock method is applied to cope with the complicated physical domains. Actuator disc model is used to represent a turbine blade row and to achieve the required flow turning and entropy rise across the blade row. The solution procedure and the actuator disc boundary conditions are described. The stream traces in various sections of the exhaust hood are presented to demonstrate the complicity of the flow patterns existing in the exhaust hood.


Sign in / Sign up

Export Citation Format

Share Document