KIM-1 level in urine with initial reduction of glomerular filtration rate in patients with various bronchial asthma variants

2021 ◽  
Vol 25 (4) ◽  
pp. 64-70
Author(s):  
V. N. Mineev ◽  
T. S. Vasilieva ◽  
A. V. Smirnov ◽  
O. V. Galkina ◽  
V. I. Trofi mov

INTRODUCTION. Previously, we postulated the common pathogenetic mechanisms in bronchial asthma (BA) and chronic kidney disease (CKD). The kidney injury molecule-1 (KIM-1) is considered as an early biomarker of the proximal renal tubules damage. In the available literature, there is only one clinical study of KIM-1 in children BA.THE AIM of the study is to  assess KIM-1 levels in different variants of BA.PATIENTS AND METHODS. The 24 BA patients were examined. Glomerular filtration rate (eGFR) by CKD-EPI was calculated. The concentration of the kidney injury molecule -1 (KIM-1) in urine was determined by enzyme immunoassay. Urinary albumin was determined by the immunoturbidimetric method. VEGF-A in serum was determined by enzyme immunoassay (sandwich variant).RESULTS. In the urine of BA patients, KIM-1 was detected, and its level in patients with a non-allergic variant is significantly higher than in patients with an allergic variant of the disease. Factor analysis was carried out, the following was revealed: the KIM-1 component with a high positive factor load is associated with a key characteristic of BA such as the severity of the disease course, as well as with a high negative factor load – with a component of the glomerular filtration rate; the KIM-1 component with a high positive factor load is associated with the presence of drug intolerance in BA patients; the microalbuminuria component is negatively associated with the severity of BA disease course, as well as with the components KIM-1, VEGF-A, which seems to be associated with the use of systemic glucocorticoids in severe BA disease course; the KIM-1 component is positively associated with the VEGF-A component, which may indicate possible KIM-1 involvement in hypoxic kidney injury in BA. CONCLUSION. The obtained data suggest that in BA, first of all, in a non-allergic variant of the disease and in a severe course of BA, kidney injure is formed, detected using kidney injure molecule-1 KIM-1.

2020 ◽  
Vol 319 (6) ◽  
pp. F988-F999
Author(s):  
Jennifer R. Charlton ◽  
Weizhen Tan ◽  
Ghaleb Daouk ◽  
Lisa Teot ◽  
Seymour Rosen ◽  
...  

Pathogenic variants in the LRP2 gene, encoding the multiligand receptor megalin, cause a rare autosomal recessive syndrome: Donnai-Barrow/Facio-Oculo-Acoustico-Renal (DB/FOAR) syndrome. Because of the rarity of the syndrome, the long-term consequences of the tubulopathy on human renal health have been difficult to ascertain, and the human clinical condition has hitherto been characterized as a benign tubular condition with asymptomatic low-molecular-weight proteinuria. We investigated renal function and morphology in a murine model of DB/FOAR syndrome and in patients with DB/FOAR. We analyzed glomerular filtration rate in mice by FITC-inulin clearance and clinically characterized six families, including nine patients with DB/FOAR and nine family members. Urine samples from patients were analyzed by Western blot analysis and biopsy materials were analyzed by histology. In the mouse model, we used histological methods to assess nephrogenesis and postnatal renal structure and contrast-enhanced magnetic resonance imaging to assess glomerular number. In megalin-deficient mice, we found a lower glomerular filtration rate and an increase in the abundance of injury markers, such as kidney injury molecule-1 and N-acetyl-β-d-glucosaminidase. Renal injury was validated in patients, who presented with increased urinary kidney injury molecule-1, classical markers of chronic kidney disease, and glomerular proteinuria early in life. Megalin-deficient mice had normal nephrogenesis, but they had 19% fewer nephrons in early adulthood and an increased fraction of nephrons with disconnected glomerulotubular junction. In conclusion, megalin dysfunction, as present in DB/FOAR syndrome, confers an increased risk of progression into chronic kidney disease.


2015 ◽  
Vol 308 (2) ◽  
pp. F157-F163 ◽  
Author(s):  
Peter N. Mittwede ◽  
Lusha Xiang ◽  
Silu Lu ◽  
John S. Clemmer ◽  
Robert L. Hester

After trauma, obese patients have an increased risk of developing acute kidney injury (AKI). We have demonstrated that obese Zucker (OZ) rats, but not lean Zucker (LZ) rats, develop AKI 24 h after orthopedic trauma. ROS have been implicated in the pathophysiology of AKI in models of critical illness. However, the contribution of ROS to trauma-induced AKI in the setting of obesity has not been determined. We hypothesized that AKI in OZ rats after trauma is mediated by increased oxidative stress. Male LZ and OZ rats were divided into control and trauma groups, with a subset receiving treatment after trauma with the antioxidant apocynin (50 mg/kg ip, 2 mM in drinking water). The day after trauma, glomerular filtration rate, plasma creatinine, urine kidney injury molecule-1, and albumin excretion as well as renal oxidant and antioxidant activity were measured. After trauma, compared with LZ rats, OZ rats exhibited a significant decrease in glomerular filtration rate along with significant increases in plasma creatinine and urine kidney injury molecule-1 and albumin excretion. Additionally, oxidative stress was significantly increased in OZ rats, as evidenced by increased renal NADPH oxidase activity and urine lipid peroxidation products (thiobarbituric acid-reactive substances), and OZ rats also had suppressed renal superoxide dismutase activity. Apocynin treatment significantly decreased oxidative stress and AKI in OZ rats but had minimal effects in LZ rats. These results suggest that ROS play an important role in AKI in OZ rats after traumatic injury and that ROS may be a potential future therapeutic target in the obese after trauma.


1957 ◽  
Vol 188 (3) ◽  
pp. 477-484 ◽  
Author(s):  
Bodil Schmidt-Nielsen ◽  
Knut Schmidt-Nielsen ◽  
T. R. Houpt ◽  
S. A. Jarnum

The nitrogen excretion was studied in the one-humped camel, Camelus dromedarius. When a growing camel was maintained on a low N intake (dates and hay) the amount of N excreted in the form of urea, NH3 and creatinine decreased to 2–3 gm/day. This decrease was caused by a drop in urea excretion from 13 gm to 0.2–0.5 gm/day. Urea given intravenously during low N intake was not excreted but was retained. (The camel like other ruminants can utilize urea for microbial synthesis of protein.) The renal mechanism for urea excretion was investigated by measuring urea clearance and glomerular filtration rate during a period of 7 months. During normal N intake about 40% of the urea filtered in the glomeruli were excreted in the urine while during low N intake only 1–2% were excreted. The variations in urea clearance were independent of the plasma urea concentration and of glomerular filtration rate, but were related to N intake and rate of growth. No evidence of active tubular reabsorption of urea was found since the urine urea concentration at all times remained higher than the simultaneous plasma urea concentration. The findings are not in agreement with the current concept for the mechanism of urea excretion in mammals. It is concluded that the renal tubules must either vary their permeability to urea in a highly selective manner or secrete urea actively.


2020 ◽  
Vol 20 (4) ◽  
pp. e312-317
Author(s):  
Folake M. Afolayan ◽  
Olanrewaju T. Adedoyin ◽  
Mohammed B. Abdulkadir ◽  
Olayinka R. Ibrahim ◽  
Sikiru A. Biliaminu ◽  
...  

Objectives: Serum creatinine levels are often used to diagnose acute kidney injury (AKI), but may not necessarily accurately reflect changes in glomerular filtration rate (GFR). This study aimed to compare the prevalence of AKI in children with severe malaria using diagnostic criteria based on creatinine values in contrast to cystatin C. Methods: This prospective cross-sectional study was performed between June 2016 and May 2017 at the University of Ilorin Teaching Hospital, Ilorin, Nigeria. A total of 170 children aged 0.5–14 years old with severe malaria were included. Serum cystatin C levels were determined using a particle-enhanced immunoturbidmetric assay method, while creatinine levels were measured using the Jaffe reaction. Renal function assessed using cystatin C-derived estimated GFR (eGFR) was compared to that measured using three sets of criteria based on creatinine values including the Kidney Disease: Improved Global Outcomes (KDIGO) and World Health Organization (WHO) criteria as well as an absolute creatinine cut-off value of >1.5 mg/dL. Results: Mean serum cystatin C and creatinine levels were 1.77 ± 1.37 mg/L and 1.23 ± 1.80 mg/dL, respectively (P = 0.002). According to the KDIGO, WHO and absolute creatinine criteria, the frequency of AKI was 32.4%, 7.6% and 16.5%, respectively. In contrast, the incidence of AKI based on cystatin C-derived eGFR was 51.8%. Overall, the rate of detection of AKI was significantly higher using cystatin C compared to the KDIGO, WHO and absolute creatinine criteria (P = 0.003, <0.001 and <0.001, respectively). Conclusion: Diagnostic criteria for AKI based on creatinine values may not indicate the actual burden of disease in children with severe malaria. Keywords: Biomarkers; Acute Kidney Injury; Renal Failure; Glomerular Filtration Rate; Cystatin C; Creatinine; Malaria; Nigeria.


2018 ◽  
Vol 25 (6) ◽  
pp. 73-77 ◽  
Author(s):  
V. V. Elagin ◽  
D. A. Kostina ◽  
O. I. Bratchikov ◽  
M. V. Pokrovsky ◽  
T. G. Pokrovskaya

Aim.The research was designed to study the renoprotective properties of erythropoietin derivatives on the kidney ischemiareperfusion experimental model.Materials and methods.The renoprotective properties of asialo erythropoietin (0.4 μg/kg and 2.4 μg/kg 30 minutes before the induction of ischemia) and carbamylated darbepoetin (50 μg/kg 24 hours before the ischemic stimulus) were studied in comparison with erythropoietin and darbepoetin in a series of experiments on male Wistar rats on a 40-minute bilateral model of renal ischemia-reperfusion. The renoprotective properties were evaluated by the results of biochemical markers of acute kidney injury, the dynamics of glomerular filtration rate and fractional sodium excretion, as well as the severity of microcirculatory disorders.Results.It was found that the prophylactic use of asialo erythropoietin (dose-dependent) and carbamylated darbepoetin leads to a decrease in the serum concentration of markers of acute renal damage, an increase in the glomerular filtration rate, a decrease in fractional sodium excretion, and a decrease in microcirculatory disorders.Conclusion.Asialo erythropoietin and carbamylated darbepoetin have the pronounced renoprotective properties and are the promising agents for the prevention and treatment of acute kidney injury.


2017 ◽  
Author(s):  
Jayme E. Locke ◽  
John T Killian Jr

This updated review on the renal system provides a concise overview of the topics most important to the general surgeon. Anatomic topics have been expanded to also include variant anatomy and surgical approaches. There is a new focus on the accuracy and utility of equations for estimating the glomerular filtration rate, as well as supplementation and pharmacology for the general surgeon with discussions of vitamin D and erythropoietin. Acute kidney injury is defined; its pathophysiology is discussed; and its management is outlined, highlighting evidence-based practice. Finally, urologic surgery is addressed with a focus on donor nephrectomy and its consequences, as well as the management of iatrogenic ureteral injuries. Key words: acute kidney injury; contrast nephropathy; erythropoiesis-stimulating agents; estimated glomerular filtration rate; iatrogenic ureteral injury; laparoscopic donor nephrectomy; renal surgical anatomy; vitamin D supplementation


2017 ◽  
Author(s):  
Jayme E. Locke ◽  
John T Killian Jr

This updated review on the renal system provides a concise overview of the topics most important to the general surgeon. Anatomic topics have been expanded to also include variant anatomy and surgical approaches. There is a new focus on the accuracy and utility of equations for estimating the glomerular filtration rate, as well as supplementation and pharmacology for the general surgeon with discussions of vitamin D and erythropoietin. Acute kidney injury is defined; its pathophysiology is discussed; and its management is outlined, highlighting evidence-based practice. Finally, urologic surgery is addressed with a focus on donor nephrectomy and its consequences, as well as the management of iatrogenic ureteral injuries. Key words: acute kidney injury; contrast nephropathy; erythropoiesis-stimulating agents; estimated glomerular filtration rate; iatrogenic ureteral injury; laparoscopic donor nephrectomy; renal surgical anatomy; vitamin D supplementation


Sign in / Sign up

Export Citation Format

Share Document