scholarly journals Spatial distribution of fine roots on a rehabilitated bauxite residue disposal area in Western Australia

Author(s):  
Willis Gwenzi ◽  
Erik Veneklaas ◽  
Ian Phillips ◽  
Tim Bleby ◽  
Christoph Hinz
2013 ◽  
pp. 951-956
Author(s):  
Craig Klauber ◽  
Nicole Harwood ◽  
Renee Hockridge ◽  
Campbell Middleton

2002 ◽  
Vol 50 (1) ◽  
pp. 107 ◽  
Author(s):  
K. L. McDougall ◽  
G. E. St J. Hardy ◽  
R. J. Hobbs

The spatial distribution of Phytophthora cinnamomi Rands at seven dieback sites in the jarrah (Eucalyptus marginata Donn. ex Smith) forest of Western Australia was determined by the following two baiting techniques: in situ baiting with live Banksia grandis Willd. seedlings and ex situ baiting of sampled soil and root material. Four areas within each site were sampled, reflecting dieback age and position in the landscape. Approximate dieback ages of 50, 20 and 5 years were determined by aerial photography. The 50-year-old age class was divided into wet valley floor and dry gravelly slope. Phytophthora cinnamomi was recovered most frequently from the 5-year-old (dieback fronts) and wet 50-year-old areas by both baiting techniques. It was recovered from more than twice as many areas and about five times as many samples when in situ B. grandis baits were used compared with ex situ soil and root baiting. Almost all recoveries from in situ baits were made between October and December. From both methods, it appears that P. cinnamomi has a patchy distribution within dieback sites in the northern jarrah forest. It is easily detected only on dieback fronts and wet valley floors. On dry gravelly sites affected 20 years or more ago, P. cinnamomi is rare and may even be absent at some sites. This makes confident detection of the pathogen difficult. In situ baiting at least allows a temporal component to the sampling and will be a useful method of detection in areas where P. cinnamomi is rare or transient.


2020 ◽  
Vol 36 (5) ◽  
pp. 807-814
Author(s):  
Xiaolin Song ◽  
Xiaodong Gao ◽  
Paul Reese Weckler ◽  
Wei Zhang ◽  
Jie Yao ◽  
...  

HighlightsAn in-situ rainwater collection and infiltration (RWCI) method is a rainwater catchment utilization techniqueRWCI is advantageous for increasing sustainable plant-avaibale water to increase drought resistanceRWCI significantly increased the amount of water and nutrients in the rhizosphere for uptake by apple tree rootsABSTRACT. A two-year field experiment was undertaken to determine the spatial distribution of plant-available water and roots in soil profiles under two rainfall control systems—an in-situ rainwater collection and infiltration (RWCI) method and a semi-circular basin (SCB)—in apple orchards in the Loess Plateau of China. The results showed that the RWCI treatments with a soil depth of 40 cm (RWCI40), 60 cm (RWCI60), and 80 cm (RWCI80) significantly increased plant-available water in different seasons and depths and increased root growth of apple trees in the experimental soil profile (0–200 cm). At 0–200 cm soil depth, then RWCI treatments had significantly higher (91.86%-110.01%) mean plant-available water storage (PAWS) than the SCB treatment in both study years (2015 and 2016). From 0–120 cm soil depth, the RWCI60 treatment had significantly higher growing season mean PAWS than RWCI40 and RWCI80; however, RWCI80 had the highest from 120–200 cm. From 0–60 cm, the RWCI treatments had 25.84%-36.86% a smaller proportion of root system than the SCB treatment. However, from 60–120 cm, the proportion of root system increased by 131.53% (RWCI40), 157.95% (RWCI60) and 129.98% (RWCI80), relative to SCB. From 0–200 cm, the RWCI treatments had 1.49–1.94 times more root dry weight density than the SCB treatment. The highest concentration of fine roots occurred in the RWCI treatments. Thus, RWCI enabled roots to absorb more water and nutrients from a wider wetted area and improved drought resistance. Keywords: Drought resistance, Fine roots, Loess Plateau, Plant-available water, Spatial distribution.


Sign in / Sign up

Export Citation Format

Share Document