scholarly journals Survey on Medical Imaging of Electrical Impedance Tomography (EIT) by Variable Current Pattern Methods

2021 ◽  
Vol 2 (2) ◽  
pp. 82-95
Author(s):  
Edriss Eisa Babikir Adam ◽  
Sathesh

Recently, the image reconstruction study on EIT plays a vital role in the medical application field for validation and calibration purpose. This research article analyzes the different types of reconstruction algorithms of EIT in medical imaging applications. Besides, it reviews many methods involved in constructing the electrical impedance tomography. The spatial distribution and resolution with different sensitivity has been discussed here. The electrode arrangement of various methods involved in the EIT system is discussed here. This research article comprises of adjacent drive method, cross method, and alternative opposite current direction method based on the voltage driven pattern. The assessment process of biomedical EIT has been discussed and investigated through the impedance imaging of the existent substances. The locality of the electrodes can be calculated and fixed for appropriate methods. More specifically, this research article discusses about the EIT image reconstruction methods and the significance of the alternative opposite current direction approach in the biomedical system. The change in conductivity test is further investigated based on the injection of current flow in the system. It has been established by the use of Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EDITORS) software, which is open-source software.

Author(s):  
Tushar Kanti Bera ◽  
J. Nagaraju

Looking into the human body is very essential not only for studying the anatomy and physiology, but also for diagnosing a disease or illness. Doctors always try to visualize an organ or body part in order to study its physiological and anatomical status for understanding and/or treating its illness. This necessity introduced the diagnostic tool called medical imaging. The era of medical imaging started in 1895, when Roentgen discovered the magical powerful invisible rays called X-rays. Gradually the medical imaging introduced X-Ray CT, Gamma Camera, PET, SPECT, MRI, USG. Recently medical imaging field is enriched with comparatively newer tomographic imaging modalities like Electrical Impedance Tomography (EIT), Diffuse Optical Tomography (DOT), Optical Coherence Tomography (OCT), and Photoacaustic Tomography (PAT). The EIT has been extensively researched in different fields of science and engineering due to its several advantages. This chapter will present a brief review on the available medical imaging modalities and focus on the need of an alternating method. EIT will be discussed with its physical and mathematical aspects, potentials, and challenges.


2017 ◽  
pp. 71-114 ◽  
Author(s):  
Tushar Kanti Bera ◽  
J. Nagaraju

Looking into the human body is very essential not only for studying the anatomy and physiology, but also for diagnosing a disease or illness. Doctors always try to visualize an organ or body part in order to study its physiological and anatomical status for understanding and/or treating its illness. This necessity introduced the diagnostic tool called medical imaging. The era of medical imaging started in 1895, when Roentgen discovered the magical powerful invisible rays called X-rays. Gradually the medical imaging introduced X-Ray CT, Gamma Camera, PET, SPECT, MRI, USG. Recently medical imaging field is enriched with comparatively newer tomographic imaging modalities like Electrical Impedance Tomography (EIT), Diffuse Optical Tomography (DOT), Optical Coherence Tomography (OCT), and Photoacaustic Tomography (PAT). The EIT has been extensively researched in different fields of science and engineering due to its several advantages. This chapter will present a brief review on the available medical imaging modalities and focus on the need of an alternating method. EIT will be discussed with its physical and mathematical aspects, potentials, and challenges.


2021 ◽  
Vol 12 (1) ◽  
pp. 50-62
Author(s):  
Sofiene Mansouri ◽  
Yousef Alharbi ◽  
Fatma Haddad ◽  
Souhir Chabcoub ◽  
Anwar Alshrouf ◽  
...  

Abstract Electrical impedance tomography (EIT) is a low-cost noninvasive imaging method. The main purpose of this paper is to highlight the main aspects of the EIT method and to review the recent advances and developments. The advances in instrumentation and in the different image reconstruction methods and systems are demonstrated in this review. The main applications of the EIT are presented and a special attention made to the papers published during the last years (from 2015 until 2020). The advantages and limitations of EIT are also presented. In conclusion, EIT is a promising imaging approach with a strong potential that has a large margin of progression before reaching the maturity phase.


Author(s):  
Yan Shi ◽  
ZhiGuo Yang ◽  
Fei Xie ◽  
Shuai Ren ◽  
ShaoFeng Xu

Medical imaging can intuitively show people the internal structure, morphological information, and organ functions of the organism, which is one of the most important inspection methods in clinical medical diagnosis. Currently used medical imaging methods can only be applied to some diagnostic occasions after qualitative lesions have been generated, and the general imaging technology is usually accompanied by radiation and other conditions. However, electrical impedance tomography has the advantages of being noninvasive and non-radiative. EIT (Electrical Impedance Tomography) is also widely used in the early diagnosis and treatment of some diseases because of these advantages. At present, EIT is relatively mature and more and more image reconstruction algorithms are used to improve imaging resolution. Hardware technology is also developing rapidly, and the accuracy of data collection and processing is continuously improving. In terms of clinical application, EIT has also been used for pathological treatment of lungs, the brain, and the bladder. In the future, EIT has a good application prospect in the medical field, which can meet the needs of real-time, long-term monitoring and early diagnosis. Aiming at the application of EIT in the treatment of lung pathology, this article reviews the research progress of EIT, image reconstruction algorithms, hardware system design, and clinical applications used in the treatment of lung diseases. Through the research and introduction of several core components of EIT technology, it clarifies the characteristics of EIT system complexity and its solutions, provides research ideas for subsequent research, and once again verifies the broad development prospects of EIT technology in the future.


Sign in / Sign up

Export Citation Format

Share Document