PARAMETRIC IDENTIFICATION OF THE DIFFERENTIAL MODEL OF HEAT EXCHANGE IN A GASIFIER

Author(s):  
С.В. Бородкин ◽  
И.Л. Батаронов ◽  
А.В. Иванов ◽  
В.И. Ряжских

На основе одномерной дифференциальной модели теплообмена в газификаторе закрытого типа сформулирована задача параметрической идентификации модели на основе измерений на штатном оборудовании промышленной газификационной установки. Модель включает в себя дополнительное интегральное условие и самосогласованно определяемую подвижную границу, отделяющую зону обледенения трубки испарителя. С применением метода сглаживания особенности разработан алгоритм итерационного решения уравнений модели, использующий метод сквозного счета для решения уравнения переноса на одной итерации. Для параметрической идентификации модели использована смешанная стратегия. Часть идентифицируемых параметров (теплоемкость испарителя, мощность нагревателя, массовая производительность насоса, коэффициент теплоотдачи в окружающую среду) определялась на основе специально организованных измерений: нагрева испарителя без прокачки сверхкритического флюида, газификации в условиях теплоизолированности корпуса испарителя, газификации в стационарном режиме работы. Остальные параметры (коэффициенты теплоотдачи в теплоноситель и сверхкритический флюид) идентифицировались в пассивных измерениях с различными производительностями насоса. Отмечено, что ввиду плохой обусловленности задачи и ограниченности вариаций коэффициентов применение регрессионных методов в данной модели неэффективно. На основе метода стрельбы разработан способ идентификации, заключающийся в определении параметров по измерениям с предельными производительностями с построением функциональной связи между идентифицируемыми параметрами, с последующей верификацией на промежуточных измерениях. Метод апробирован на примере штатной газификационной установки СГУ-7КМ-У We formulated the problem of parametric identification of the model based on measurements on the standard equipment of an industrial gasification plant on the basis of a one-dimensional differential model of heat transfer in a closed-type gasifier. The model includes an additional integral condition and a self-consistently defined movable boundary separating the icing zone of the evaporator tube. Using the method of smoothing the singularity, we developed an algorithm for iterative solution of the model equations, using the end-to-end counting method to solve the transfer equation in one iteration. We used a mixed strategy for parametric identification of the model. We determined some of the identified parameters (evaporator heat capacity, heater power, mass pump capacity, heat transfer coefficient to the environment) on the basis of specially organized measurements: heating of the evaporator without pumping supercritical fluid, gasification under conditions of thermal insulation of the evaporator body, gasification in stationary operation. We identified the remaining parameters (heat transfer coefficients to the coolant and supercritical fluid) in passive measurements with different pump capacities. We noted that due to the poor conditionality of the problem and the limited variation of coefficients, the use of regression methods in this model is ineffective. Based on the ballistic method, we developed an identification method, which consists in determining parameters by measurements with marginal performance with the construction of a functional relationship between the identified parameters, followed by verification on intermediate measurements. We tested the method on the example of a standard gasification plant SGU-7KM-U

2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Mahdi Mohseni ◽  
Majid Bazargan

A two-dimensional numerical model is developed to study the effect of the turbulent Prandtl number Prt on momentum and energy transport in a highly variable property flow of supercritical fluids in a vertical round tube. Both regimes of enhanced and deteriorated heat transfer have been investigated. The equations of the Prt leading to the best agreement with the experiments in either regime of heat transfer were specified. The results of this study show that the increase in the Prt causes the heat transfer coefficients to decrease. When the buoyancy force increases, a better agreement with the experimental data is reached if values lower than 0.9 are used for the Prt. A decrease in the Prt values results in an increase in turbulent activities. From the effect that the Prt has on heat transfer coefficients, it may be deduced that the buoyancy effects in the upward flow of a supercritical fluid lead to the decrease in the Prt value and hence to the increase in the heat transfer coefficients. Furthermore, the value of the Prt in the laminar viscous sublayer as expected does not have a significant effect on heat transfer rate. The effect of the turbulence model on the extent to which the Prt influences the rate of heat transfer is also examined. The results obtained are shown to be valid regardless of the turbulence model used.


Sign in / Sign up

Export Citation Format

Share Document