PARTICLE FILTER OPTIMIZATION TOOLS FOR DYNAMICAL SYSTEMS PROBABILISTIC MODELS

Author(s):  
П.В. Полухин

В работе предложены математические инструменты на основе достаточных статистик и декомпозиции выборок в сочетании с алгоритмами распределенных вычислений, позволяющие существенно повысить эффективность процедуры фильтрации. Filtering algorithms are used to assess the state of dynamic systems when solving various practical problems, such as voice synthesis and determining the geo-position and monitoring the movement of objects. In the case of complex hierarchical dynamic systems with a large number of time slices, the process of calculating probabilistic characteristics becomes very time-consuming due to the need to generate a large number of samples. The essence of optimization is to reduce the number of samples generated by the filter, increase their consistency and speed up computational operations. The paper offers mathematical tools based on sufficient statistics and sample decomposition in combination with distributed computing algorithms that can significantly improve the efficiency of the filtering procedure.

2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Brigitte Vallée ◽  
Antonio Vera

International audience The Gaussian algorithm for lattice reduction in dimension 2 is precisely analysed under a class of realistic probabilistic models, which are of interest when applying the Gauss algorithm "inside'' the LLL algorithm. The proofs deal with the underlying dynamical systems and transfer operators. All the main parameters are studied: execution parameters which describe the behaviour of the algorithm itself as well as output parameters, which describe the geometry of reduced bases.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 569-591 ◽  
Author(s):  
HOONG CHIEH YEONG ◽  
JUN HYUN PARK ◽  
N. SRI NAMACHCHIVAYA

The study of random dynamical systems involves understanding the evolution of state variables that contain uncertainties and that are usually hidden, or not directly observable. Therefore, state variables have to be estimated and updated based on system models using information from observational data, which themselves are noisy, in the sense that they contain uncertainties and disturbances due to imperfections in observational devices and disturbances in the environment within which data are being collected. The development of efficient data assimilation methods for integrating observational data in predicting the evolution of random state variables is thus an important aspect in the study of random dynamical systems. In this paper, we consider a particle filtering approach to nonlinear filtering in multiscale dynamical systems. Particle filtering methods [1–3] utilizes ensembles of particles to represent the conditional density of state variables using particle positions, distributed over a sample space. The distribution of an ensemble of particles is updated using observational data to obtain the best representation of the conditional density of the state variables of interest. On the other hand, homogenization theory [4, 5], allows us to estimate the coarse-grained (slow) dynamics of a multiscale system on a larger timescale without having to explicitly study the fast variable evolution on a small timescale. The results of filter convergence presented in [6] shows the convergence of the filter of the actual state variable to a homogenized solution to the original multiscale system, and thus we develop a particle filtering scheme for multiscale random dynamical systems that utilizes this convergence result. This particle filtering method is called the Homogenized Hybird Particle Filter, and it incorporates a multiscale computation scheme, the Heterogeneous Multiscale Method developed in [7], with the novel branching particle filter described in [8–10]. By incorporating a multiscale scheme based on homogenization of the original system, estimation of the coarse-grained dynamics using observational data is performed over a larger timescale, thus resulting in computational time and cost reduction in terms of the evolution of the state variables as well as functional evaluations for the filtering aspect. We describe the theory behind this combined scheme and its general algorithm, concluded with an application to the Lorenz-96 [11] atmospheric model that mimics midlatitude geophysical dynamics with microscopic convective processes.


2015 ◽  
Vol 13 ◽  
pp. 168-171 ◽  
Author(s):  
Dumitru Bălă

In this paper we present several methods for the study of stability of dynamical systems. We analyze the stability of a hammer modeled by the free vibrator that collides with a sprung elastic mass taking into consideration the viscous damping too.


1998 ◽  
Vol 21 (5) ◽  
pp. 634-635 ◽  
Author(s):  
Ronald L. Chrisley

(1) Van Gelder's concession that the dynamical hypothesis is not in opposition to computation in general does not agree well with his anticomputational stance. (2) There are problems with the claim that dynamic systems allow for nonrepresentational aspects of computation in a way in which digital computation cannot. (3) There are two senses of the “cognition is computation” claim and van Gelder argues against only one of them. (4) Dynamical systems as characterized in the target article share problems of universal realizability with formal notions of computation, but differ in that there is no solution available for them. (5) The dynamical hypothesis cannot tell us what cognition is, because instantiating a particular dynamical system is neither necessary nor sufficient for being a cognitive agent.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Benjamin Leporq ◽  
Sorina Camarasu-Pop ◽  
Eduardo E. Davila-Serrano ◽  
Frank Pilleul ◽  
Olivier Beuf

An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today.


Author(s):  
Ilya L’vovich Sandler

The paper presents a recurrent algorithm for estimating the parameters of multidimensional discrete linear dynamical systems of different orders with input errors, described by white noise. It is proved that the obtained estimates using stochastic gradient algorithm for minimization of quadratic forms are highly consistent


Sign in / Sign up

Export Citation Format

Share Document