scholarly journals MODELING OF ERRORS IN THE MEASUREMENT CHANNELS OF THE AUTOMATED PROCESS CONTROL SYSTEM IN THE LABVIEW ENVIRONMENT

Author(s):  
Irina Il'ina ◽  
Yana Sutem'eva

Questions of estimation of errors of measuring channels of automated process control systems are investigated. A method for studying measurement channel errors based on their mathematical modeling in the visual programming environment LabVIEW is proposed

Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 78-87
Author(s):  
Edik K. Arakelyan ◽  
◽  
Ivan A. Shcherbatov ◽  

The uncertainty of the source information is used to solve key tasks in an intelligent automated thermal process control system affects the calculation of control actions, the implementation of equipment optimal operating modes and, as a result, leads to degraded reliability. As a rule, this type of information can be qualitative (the use of expert knowledge) or quantitative in nature. In this regard, it is extremely important to reduce the impact of uncertainty. The aim of the study is to identify the types and origins of uncertainty in the source information used by an intelligent automated process control system and to develop approaches to reduce its impact on the reliability of power equipment operation. The approaches used to ensure the specified indicators of reliability, efficiency and environmental friendliness in modern intelligent automated process control systems are based on predictive strategies, according to which the technical condition of equipment and specific degradation processes are predicted. This means that various types of uncertainty can have a significant negative impact. To reduce the influence of uncertainty of the initial information that affects the reliability of power equipment operation, the use of artificial neural networks is proposed. Their application opens the possibility to predict the occurrence of equipment defects and failures based on retrospective data for specified forecast time intervals. A method for reducing the impact of anomalies contained in the source information used in an intelligent process control system for energy facilities is demonstrated. Data omissions and outliers are investigated, the elimination of which reduces the impact of uncertainty and improves the quality of solving key problems in intelligent automated process control systems. Experimental studies were carried out that made it possible to identify the mathematical methods for removing omissions and anomalies in the source information in the best way. Methodological aspects of eliminating various types of uncertainty that exist in managing of power facilities by means of intelligent automated process control systems at the key stages of the power equipment life cycle are described.


Author(s):  
Aleksey Sergeevich Dobrynin ◽  
Mikhail Yur'evich Gudkov ◽  
Roman Sergeevich Koynov

The continuous development of automated control systems for industrial facilities leads to the emergence of more advanced and complex control algorithms. A natural consequence of the development of control systems (CS) is the use of more complex technical means: sensors, controllers, SCADA and MES systems. Ultimately, the saturation of systems with additional software and hardware leads to a decrease in manageability in general, since software needs to be updated, equipment often fails, needs replacement, etc. Thus, approaches aimed at creating separate, autonomously functioning subsystems are becoming a thing of the past. An integrated, multi-level joint management of the entire infrastructure of the process control system is needed, from the technological facility to the technical infrastructure, which is closely tied to the facility. The article discusses the issues of constructing top-level control subsystems for the process control system, when it is necessary to control directly the software and hardware as part of the process control system. As research methods, simulation and computer modeling was used, which made it possible to evaluate the effectiveness of the proposed approaches and management methods. Also, the research results were verified through the pilot implementation of an automated incident management system based on the proposed approaches in the process of managing a complex technologically object. The novelty of the research lies in the proposed approach to incident management in automated process control systems, which makes it possible to improve the quality of management, reduce management costs, and predict (in some cases) the occurrence of new incidents and take measures to prevent them. Studies have shown the feasibility of using the proposed approach to control complex non-stationary automation systems.


2019 ◽  
Vol 124 ◽  
pp. 05053
Author(s):  
G.M. Safiullina ◽  
N.V. Bogdanova ◽  
D.R. Gilyazov

Modern requirements for the quality of technological processes and the level of automation of complex facilities have raised an extremely relevant issue of the process control system modernization at Ekibastuz GRES-1 n.a. B. Nurzhanov. In order to ensure the required level of technological parameters, the modernization of fuel supply paths was carried out by KER-Engineering LBC. As a result, the performance of Ekibastuz GRES-1 was significantly improved.


Author(s):  
�. ������� ◽  
◽  
�. ʳ�� ◽  
�. ������� ◽  
�. ������� ◽  
...  

Author(s):  
D. Vasilchenko ◽  
A. Budilovskaya

This article discusses the use of Internet architecture in centralized automated process control systems for the purpose of monitoring and managing geographically distributed objects. The hardware components of the proposed architecture are described and the required functions are formulated. The methods of implementing these functions of centralized control systems based on this architecture are proposed: using internal algorithms of SCADA systems, or using microprocessor subsystems. The difficulties that are likely to be encountered when implementing all the required functions in the system being developed are described.


2020 ◽  
Vol 13 (37) ◽  
pp. 18
Author(s):  
Juan Carlos Travieso Torres ◽  
Daniel Galdámez González ◽  
Roberto Rodríguez Travieso ◽  
Arturo Rodríguez García

Nuestra principal contribución es la aplicación del lenguaje de programación visual (VPL, de sus siglas en inglés “Visual Programming Language”) y los dispositivos móviles (MD, de sus siglas en inglés “Mobile Devices”) para el aprendizaje de los sistemas de control, lo cual mejoró la comprensión de estudiantes regulares considerados dentro de un diseño cuasiexperimental. El empleo de un ambiente de enseñanza que emplea VPL y MD para abordar los sistemas de control de procesos fue la clave para resolver las dificultades de aprendizaje que tenían el estudiante con el método de enseñanza tradicional, y que perduraban a pesar de ya que se estaba considerando la alineación constructiva entre instrucción, aprendizaje y evaluación, actividades auténticas y un enfoque de aprendizaje basado en el diseño. Los elementos gráficos utilizados por VPL, tomados de una biblioteca hecha de bloques reutilizables, con diferentes formas y colores, facilitan la comprensión de los sistemas de control de procesos. También VPL muestra todo el sistema de control de procesos de un vistazo a través de los diferentes MD utilizados, que fueron computadoras portátiles, tabletas y teléfonos inteligentes. Ayudó que todos estos MD son bien conocidos y fáciles de usar para los estudiantes. La evaluación comparativa del rendimiento de aprendizaje de los estudiantes, con y sin el uso de VPL y MD, mostró la efectividad del rediseño en el modo de enseñanza. Se facilitó el aprendizaje de los sistemas de control de procesos, reduciendo las dificultades de la enseñanza tradicional y mejorando la comprensión de los estudiantes. Además, la autoeficacia de los estudiantes se vio afectada positivamente.


Sign in / Sign up

Export Citation Format

Share Document