Spindle assembly with adjustable output characteristics

2021 ◽  
pp. 21-23
Author(s):  

A method for controlling the output characteristics of spindle assemblies based on the use of tapered gas bearings with a small taper angle is proposed. An experimental bench for studying the performance characteristics of these bearings is described. The results of researches of gas-static bearings with a small taper angle are presented. Keywords: spindle assembly, gas-static support, small taper angle, experiment. [email protected]

2021 ◽  
Author(s):  
BIPLAB BHATTACHARJEE ◽  
PRASUN CHAKRABORTI ◽  
KISHAN CHOUDHURY

Abstract In this article a mathematical model of single layered nano-fluid lubricated PJB (porous journal bearing) has been formulated. The nano-lubricant's impact on the efficiency of said journal bearing has been studied using modified Darcy's law and boundary conditions. The different nanoparticles often used as an additive in industrial lubricating oils improve their viscosity significantly. The brief description of dimensionless performance characteristics of the investigated bearing was obtained by the use of the nano-lubricant's modified Krieger-Dougherty viscosity model. The observations revealed that the output characteristics are substantially improved by using nano-lubricant. The present study was validated by comparing the findings of recently published data with micropolar fluid and was found to be completely compatible since data with nano-lubricant are still unavailable.


Author(s):  
A.F. Denisenko ◽  
◽  
V.V. Mikhailov ◽  

Monitoring the state of spindle assemblies of modern metal-cutting machines using CIP methods implies the possibility of installing control sensors in places with maximum vibration information content. In this regard, the assessment of the informativeness of the vibration field of the spindle assembly, which can be carried out in advance, taking into account the design features, geometric and dimensional characteristics, is an urgent task. Based on the energy approach, using the example of the spindle assembly of a universal lathe, a computational model is proposed, built along the median planes of the walls. On the basis of the calculated model, the equations of the energy balance were compiled taking into account the conditions for the transfer of vibration power between the walls of the housing. The method for determining the vibration power of the main sources in the spindle assemblies is given: a spindle with residual unbalance, a drive gear and bearings. It has been established that the most significant factors determining the vibration power introduced into the spindle unit housing are the operation of the bearings, the weight of the spindle and the location of its center of mass. The result obtained makes it possible to detect incipient defects in the bearings, which, as practice shows, are the defining elements of the parametric reliability of spindle assemblies. The resulting model of the vibration field can be used to determine the reference values of vibration velocities that are formed from sources in the absence of defects.


1975 ◽  
Vol 97 (1) ◽  
pp. 69-72 ◽  
Author(s):  
B. C. Majumdar

Theoretical investigation on the performance characteristics of externally pressurized gas bearings with several supply holes is made. The solution is obtained for finite bearings using pressure perturbation method. The results are compared with an approximate solution assuming quasi-steady film. It has been shown that quasi-steady solution overestimates the squeeze film force.


Author(s):  
Владимир Павлович Легаев ◽  
Дмитрий Вадимович Симаков

Оптимальное проектирование сложных технических объектов невозможно без прогнозирования характеристик их работоспособности. Применяемые при этом методы многокритериальной оптимизации напрямую используют в качестве критериев выходные характеристики динамического качества, поэтому задача прогнозирования последних, в конечном счете, определяет качество проектирования. The optimal design of complex technical objects is impossible without predicting the characteristics of their performance. The multicriteria optimization methods used in this case directly use the output characteristics of dynamic quality as criteria, therefore, the task of forecasting the latter, ultimately, determines the quality of the design.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


1993 ◽  
Vol 113 (6) ◽  
pp. 753-759 ◽  
Author(s):  
Kuniho Tanaka ◽  
Etsuo Sakoguchi ◽  
Eiji Yamada

Sign in / Sign up

Export Citation Format

Share Document