spindle structure
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 220 (11) ◽  
Author(s):  
Isabell Schneider ◽  
Marta de Ruijter-Villani ◽  
M. Julius Hossain ◽  
Tom A.E. Stout ◽  
Jan Ellenberg

The first mitosis of the mammalian embryo must partition the parental genomes contained in two pronuclei. In rodent zygotes, sperm centrosomes are degraded, and instead, acentriolar microtubule organizing centers and microtubule self-organization guide the assembly of two separate spindles around the genomes. In nonrodent mammals, including human or bovine, centrosomes are inherited from the sperm and have been widely assumed to be active. Whether nonrodent zygotes assemble a single centrosomal spindle around both genomes or follow the dual spindle self-assembly pathway is unclear. To address this, we investigated spindle assembly in bovine zygotes by systematic immunofluorescence and real-time light-sheet microscopy. We show that two independent spindles form despite the presence of centrosomes, which had little effect on spindle structure and were only loosely connected to the two spindles. We conclude that the dual spindle assembly pathway is conserved in nonrodent mammals. This could explain whole parental genome loss frequently observed in blastomeres of human IVF embryos.


2021 ◽  
Author(s):  
Gabriel Cavin-Meza ◽  
Michelle M. Kwan ◽  
Sarah M. Wignall

ABSTRACTWhile centrosomes organize spindle poles during mitosis, oocyte meiosis can occur in their absence. Spindles in human oocytes frequently fail to maintain bipolarity and consequently undergo chromosome segregation errors, making it important to understand mechanisms that promote acentrosomal spindle stability. To this end, we have optimized the auxin-inducible degron system in C. elegans to remove factors from pre-formed oocyte spindles within minutes and assess effects on spindle structure. This approach revealed that dynein is required to maintain the integrity of acentrosomal poles; removal of dynein from bipolar spindles caused pole splaying, and when coupled with a monopolar spindle induced by depletion of kinesin-12 motor KLP-18, dynein depletion led to a complete dissolution of the monopole. Surprisingly, we went on to discover that following monopole disruption, individual chromosomes were able to reorganize local microtubules and re-establish a miniature bipolar spindle that mediated chromosome segregation. This revealed the existence of redundant microtubule sorting forces that are undetectable when KLP-18 and dynein are active. We found that the kinesin-5 family motor BMK-1 provides this force, uncovering the first evidence that kinesin-5 contributes to C. elegans meiotic spindle organization. Altogether, our studies have revealed how multiple motors are working synchronously to establish and maintain bipolarity in the absence of centrosomes.


2020 ◽  
Vol 11 (3) ◽  
pp. 497-510
Author(s):  
Hendri Van Hoten ◽  
◽  
Nurbaiti Nurbaiti ◽  
Afdhal Kurniawan Mainil ◽  
Jhonson Van Silitonga

The Research was about the comparison between experiment and simulation of natural frequency in CNC spindle. CNC spindle vibration will reduce machine tool performance. It could lead to the damage of the machine tool. The spindle structure unbalances of machine tools will cause vibration when it is operated. In the CNC machine, the spindle shaft vibration should be minimum. Based on this point, the natural frequency testing on the spindle shaft structure was carried out. The experiments were conducted by employing oscilloscope which could provide the vibration data in the time domain. The data was converted into the frequency domain using FFT. Measurements were carried out on 7 times of testing. Every one time of testing, 10 data were taken at each testing points. The tests were conducted at 10 testing points. Therefore, the total data obtained were 700 test data. The test results were then compared with the results of simulation modeling in 10 vibrate modes using Solidwork software. After testing and simulations were compared, 4 personal frequency values were obtained in the test that uses a measuring instrument and 6 personal frequency values could not be read. These were because the accelerometer used could not read up to 0 Hz frequency. Natural frequency obtained from simulations and tests were expressed in the percentage of errors. The largest error value in the 9th vibration mode measurement with a natural frequency was 2117.96 Hz with an error of 0.32%. The smallest error value was 0.11% with a natural frequency of 2995.79 Hz.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan-Michael Bresch ◽  
Nadiya Yerich ◽  
Rong Wang ◽  
Ann O. Sperry

Abstract Background Maintenance of centrosome number in cells is essential for accurate distribution of chromosomes at mitosis and is dependent on both proper centrosome duplication during interphase and their accurate distribution to daughter cells at cytokinesis. Two essential regulators of cell cycle progression are protein phosphatase 1 (PP1) and Aurora A kinase (AURKA), and their activities are each regulated by the PP1 regulatory subunit, protein phosphatase 1 regulatory subunit 2 (PPP1R2). We observed an increase in centrosome number after overexpression of these proteins in cells. Each of these proteins is found on the midbody in telophase and overexpression of PPP1R2 and its mutants increased cell ploidy and disrupted cytokinesis. This suggests that the increase in centrosome number we observed in PPP1R2 overexpressing cells was a consequence of errors in cell division. Furthermore, overexpression of PPP1R2 and its mutants increased midbody length and disrupted midbody architecture. Additionally, we show that overexpression of PPP1R2 alters activity of AURKA and PP1 and their phosphorylation state at the centrosome. Results Overexpression of PPP1R2 caused an increase in the frequency of supernumerary centrosomes in cells corresponding to aberrant cytokinesis reflected by increased nuclear content and cellular ploidy. Furthermore, AURKA, PP1, phospho PPP1R2, and PPP1R2 were all localized to the midbody at telophase, and PP1 localization there was dependent on binding of PPP1R2 with PP1 and AURKA as well as its phosphorylation state. Additionally, overexpression of both PPP1R2 and its C-terminal AURKA binding site altered enzymatic activity of AURKA and PP1 at the centrosome and disrupted central spindle structure. Conclusions Results from our study reveal the involvement of PPP1R2 in coordinating PP1 and AURKA activity during cytokinesis. Overexpression of PPP1R2 or its mutants disrupted the midbody at cytokinesis causing accumulation of centrosomes in cells. PPP1R2 recruited PP1 to the midbody and interference with its targeting resulted in elongated and severely disrupted central spindles supporting an important role for PPP1R2 in cytokinesis.


2020 ◽  
Author(s):  
Matt Sourisseau ◽  
Yu Guang Wang ◽  
Robert S. Womersley ◽  
Hau-Tieng Wu ◽  
Wei-Hsuan Yu

AbstractConcentration of frequency and time (ConceFT) is a generalized multitaper algorithm introduced to analyze complicated non-stationary time series. To avoid the randomness in the original ConceFT algorithm, we apply the novel complex spherical design technique to standardize ConceFT, which we coin CQU-ConceFT. The proposed CQU-ConceFT is applied to visualize the spindle structure in the electroencephalogram signal during the N2 sleep stage and other physiological time series.


Author(s):  
Subrata Kumar Dey ◽  
Pranami Bhaumik ◽  
Mandar Bhattacharya

Maternal aging and different biological factors play an important role in the birth of Down syndrome baby. Hormones play a crucial role for the maintenance of female sex cycle and oocyte maturation. Disparity in the level of these hormones during menstrual cycle has profound effect on female reproductive system. Hormonal imbalance also affects meiotic process and integrity of spindle structure and leads to nondisjunction of chromosome. Follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH) and luteinizing hormone (LH) play a crucial role in ovarian aging and nondisjunction of chromosomes. FSH stands as a hormonal indicator for ovarian aging, and its high level is responsible for aneuploid birth. Advanced chronological age of mother, ovarian aging, environmental factors and accelerated telomere shortening at older reproductive age are found to be risk factors for the birth of trisomy 21 Down syndrome.


Author(s):  
Isabell Schneider ◽  
Marta de Ruijter-Villani ◽  
M. Julius Hossain ◽  
Tom A. E. Stout ◽  
Jan Ellenberg

AbstractThe first mitosis of the mammalian embryo must partition the parental genomes contained in two pronuclei. In rodent zygotes, sperm centrosomes are degraded and, instead, acentriolar microtubule organizing centers and microtubule self-organization guide the assembly of two separate spindles around the genomes. In non-rodent mammals, including human or bovine, centrosomes are inherited from the sperm and have been widely assumed to be active. Whether non-rodent zygotes assemble a single centrosomal spindle around both genomes, or follow the dual spindle self-assembly pathway is unclear. To address this, we investigated spindle assembly in bovine zygotes by systematic immunofluorescence and real-time light-sheet microscopy. We show that two independent spindles form around the parental genomes despite the presence of centrosomes, which had little effect on spindle structure and were only loosely connected to the two spindles. We conclude that the dual spindle assembly pathway is conserved in non-rodent mammals. This could explain whole parental genome loss frequently observed in blastomeres of human IVF embryos.SummaryThis study investigates spindle assembly during the first embryonic division in bovine zygotes that, like human, inherit centrosomes from the sperm. It shows that two independent microtubule arrays form by self-organization around parental genomes with only loosely connected centrosomes.


2020 ◽  
Author(s):  
Ana Sofía M. Uzsoy ◽  
Parsa Zareiesfandabadi ◽  
Jamie Jennings ◽  
Alexander F. Kemper ◽  
Mary Williard Elting

The mitotic spindle is a microtubule-based machine that pulls the two identical sets of chromosomes to opposite ends of the cell during cell division. The fission yeast Schizosaccharomyces pombe is an important model organism for studying mitosis due to its simple, stereotyped spindle structure and well-established genetic toolset. S. pombe spindle length is a useful metric for mitotic progression, but manually tracking spindle ends in each frame to measure spindle length over time is laborious and can limit experimental throughput. We have developed an ImageJ plugin that can automatically track S. pombe spindle length over time and replace manual or semi-automated tracking of spindle elongation dynamics. Using an algorithm that detects the principal axis of the spindle and then finds its ends, we reliably track the length and angle of the spindle as the cell divides. The plugin integrates with existing ImageJ features, exports its data for further analysis outside of ImageJ, and does not require any programming by the user. Thus, the plugin provides an accessible tool for quantification of S. pombe spindle length that will allow automatic analysis of large microscopy data sets and facilitate screening for effects of cell biological perturbations on mitotic progression.


2020 ◽  
Vol 14 (4) ◽  
pp. 453-482
Author(s):  
Dina B. Loginova ◽  
Anastasia A. Zhuravleva ◽  
Olga G. Silkova

The assembly of the microtubule-based spindle structure in plant meiosis remains poorly understood compared with our knowledge of mitotic spindle formation. One of the approaches in our understanding of microtubule dynamics is to study spindle assembly in meiosis of amphyhaploids. Using immunostaining with phH3Ser10, CENH3 and α-tubulin-specific antibodies, we studied the chromosome distribution and spindle organisation in meiosis of F1 2R(2D)xR wheat-rye hybrids (genome structure ABDR, 4× = 28), as well as in wheat and rye mitosis and meiosis. At the prometaphase of mitosis, spindle assembly was asymmetric; one half of the spindle assembled before the other, with simultaneous chromosome alignment in the spindle mid-zone. At diakinesis in wheat and rye, microtubules formed a pro-spindle which was subsequently disassembled followed by a bipolar spindle assembly. In the first meiosis of hybrids 2R(2D)xR, a bipolar spindle was not found and the kinetochore microtubules distributed the chromosomes. Univalent chromosomes are characterised by a monopolar orientation and maintenance of sister chromatid and centromere cohesion. Presence of bivalents did not affect the formation of a bipolar spindle. Since the central spindle was absent, phragmoplast originates from “interpolar” microtubules generated by kinetochores. Cell plate development occurred with a delay. However, meiocytes in meiosis II contained apparently normal bipolar spindles. Thus, we can conclude that: (1) cohesion maintenance in centromeres and between arms of sister chromatids may negatively affect bipolar spindle formation in the first meiosis; (2) 2R/2D rye/wheat chromosome substitution affects the regulation of the random chromosome distribution in the absence of a bipolar spindle.


Sign in / Sign up

Export Citation Format

Share Document