A review on graphene reinforced cement composite: technical approach for ecofriendly construction

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
May Gamil ◽  
◽  
Ali Gharizadeh ◽  
Farid Sartipi ◽  
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Payam Sadrolodabaee ◽  
Josep Claramunt ◽  
Mònica Ardanuy ◽  
Albert de la Fuente

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chang-Geun Cho ◽  
Bang Yeon Lee ◽  
Yun Yong Kim ◽  
Byung-Chan Han ◽  
Seung-Jung Lee

This paper presents a new reinforced concrete (RC) composite slab system by applying an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel. In the proposed composite slab system, the DFRCC panel, which has ribs to allow for complete composite action, is manufactured by extrusion process; then, the longitudinal and transverse reinforcements, both at the bottom and the top, are placed, and finally the topping concrete is placed. In order to investigate the flexural behavior of the proposed composite slab system, a series of bending tests was performed. From the test results, it was found that the extruded DFRCC panel has good deformation-hardening behavior under flexural loading conditions and that the developed composite slab system, applied with an extruded DFRCC panel, exhibits higher flexural performance compared to conventional RC slab system in terms of the stiffness, load-bearing capacity, ductility, and cracking control.


Sign in / Sign up

Export Citation Format

Share Document