scholarly journals Effects of Variable Thermal Conductivity and Heat Source / Sink on MHD Flow Near a Stagnation Point on a Linearly Stretching Sheet

2009 ◽  
Vol 2 (01) ◽  
2015 ◽  
Vol 42 (2) ◽  
pp. 111-133 ◽  
Author(s):  
Hunegnaw Dessie ◽  
Kishan Naikoti

The effects of variable viscosity and thermal conductivity on MHD heat transfer flow of viscous incompressible electrically conducting fluid near stagnation point flow on non-conducting stretching sheet in presence of uniform transfer magnetic field with heat source/sink and viscous dissipation has been analyzed. The governing partial differential equations are transformed into ordinary differential equations using a special form of Lie group transformations and then solved using Fourth order Runge-Kutta Method. Effects of different physical parameters on the flow and heat transfer characteristics are analyzed. Variations of different parameters on skin fiction coefficient-f??(0) and temperature gradient ???(0) are presented in tabular form.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


Author(s):  
Hunegnaw Dessie ◽  
Naikoti Kishan

In this paper, unsteady MHD flow of heat and mass transfer of Cu-water and TiO2-water nanofluids over stretching sheet with a non-uniform heat/source/sink considering viscous dissipation and chemical reaction is investigated. The governing partial differential equations with the corresponding boundary conditions are transformed to a system of non-linear ordinary differential equations and solved using Keller box method. The velocity, temperature and concentration profiles are obtained and the influences of various relevant parameters, namely the magnetic parameter M, Prandtl number Pr, Eckert number Ec, Schmidt number Le , chemical reaction parameter K,unsteadiness parameter S and the Soret number Sr on velocity, temperature and concentration profiles are discussed. The skin-friction coefficient–f''(0), heat transfer coefficient –θ'(0) and mass transfer coefficient –φ'(0) are presented in tables. A comparison with published results is also presented and found in good agreement. Keywords: MHD; Keller box method; unsteady; nanofluid; non-uniform heat/source/sink; chemical reaction; viscous dissipation.


Author(s):  
T. Hayat ◽  
S.A. Shehzad ◽  
A. Alsaedi

Purpose – The purpose of this paper is to investigate the three-dimensional flow of Maxwell fluid with variable thermal conductivity in presence of heat source/sink. Design/methodology/approach – Similarity transformations are utilized to reduce the nonlinear partial differential equations into ordinary differential equations. The governing nonlinear problems are solved by homotopy analysis method. Findings – The paper found that the velocities decrease while temperature increases for higher Hartman number. It is also seen that the thermal boundary layer thickness and temperature are increased with an increase in variable thermal conductivity parameter and heat source/sink parameter. Practical implications – Heat transfer analysis with heat source/sink has pivotal role in many industrial applications like cooling of an infinite metallic plate in a cooling bath, drawing of plastic films, nuclear plants, gas turbines, various propulsion devices for missiles, space vehicles and processes occurring at high temperatures. Originality/value – This study discusses the magnetohydrodynamic three-dimensional flow of Maxwell fluid with variable thermal conductivity and heat source/sink. No such analysis exists in the literature yet.


Sign in / Sign up

Export Citation Format

Share Document