scholarly journals Effect of magnetic field on fluid flow characteristics and augmentation of heat transfer in a heat exchanger

Author(s):  
Mohammed Almeshaal ◽  
◽  
Sujoy Saha ◽  

The study of fluid flow, subjected to an external magnetic field has become an attractive and demanding research area because of its huge applications. In this work, water base magnetic nanofluid dynamics, taking into account the Magnetohydrodynamics (MHD) phenomenon has been explicitly investigated. In this study, governing equations are coupled with Magnetohydrodynamics (MHD) and are solved with the help of a finite volume procedure based on a control volume approach. The numerical outcomes of the simulation are depicted and discussed sequentially in terms of different contour and flow parameters. The impact of Magnetic number arising from Magneto Hydro Dynamics (MHD) ranging from 302 to 377 for a fixed Reynolds number of 100 on the flow characteristics has been presented in detail. The flow parameters like wall shear and pressure of wall are increased with increasing Magnetic number and the number of recirculating bubbles increases with decreasing in Magnetic number. Thus, to generate the maximum number of recirculating bubbles,a lower magnetic number is being recommended. The formation of the recirculating zone increases the retention time of fluid which results in the enhancement of heat transfer for a specific surface of a heat exchanger.

2020 ◽  
Vol 56 (12) ◽  
pp. 3261-3271
Author(s):  
Kitti Nilpueng ◽  
Lazarus Godson Asirvatham ◽  
Ahmet Selim Dalkılıç ◽  
Omid Mahian ◽  
Ho Seon Ahn ◽  
...  

Author(s):  
Satyendra Singh ◽  
◽  
Tarun Joshi ◽  
Himanshi Kharkwal ◽  
◽  
...  

The heat transfer and fluid flow characteristics in a tube heat exchanger using H-shape inserts with circular ring (CRWHS) has been done by computationally and experimentally. In this investigation parameters like ratio of the diameters and pitches are considered. The value of diameter and pitch ratios are (DR=0.8, 0.9), (PR=3, 4) respectively. The main section in which investigation was done is 1.5m long and the hydraulic diameter of the tube is 68.1mm. 1000 W/m2 heat flux was provided in the main section. Heat flux was constant throughout the investigation. Air is used as a working medium in which 6000 to 21000 Reynolds number was used for the investigation. The observation revealed that the increment in heat transfer rate is 4.56 times as compare to smooth tube for the circular ring with H-shape inserts. In case of DR=0.8 and PR=3, maximum thermal performance factor was obtain which is 3.24. In GIT the deviation in Nusselt number & friction factor is limited to ±0.4% & ±0.1% respectively. CFD analysis result comparisons with experimental one are presented in which the maximum deviations for thermal performance factor are limited to ±3.6%.


Author(s):  
Mehdi Mehrabi ◽  
Tuhid Pashaee ◽  
Mohsen Sharifpur ◽  
Josua P. Meyer

In this paper a genetic algorithm-polynomial neural network approach is used in order to model the effect of important parameters on heat transfer as well as fluid flow characteristics for a double-pipe helical heat exchanger by using numerical-certified results. In this way, overall heat transfer coefficient (Uo), inner and annular pressure drop (ΔPin, ΔPan) are modeled with respect to the variation of inner and annular dean number, inner and annular Prandtl number, and pitch of coil which are defined as input (design) variables. The numerical-certified data was randomly divided into test and train sections which the former is used for benchmark. The GA-PNN structure was instructed by 75 percent of the numerical-validated data. 25 percent of the primary data which had been considered for testing procedure were entered into GA-PNN proposed models and results were compared by statistical criteria.


Sign in / Sign up

Export Citation Format

Share Document