scholarly journals Direct displacement-based seismic design of concrete buildings

Author(s):  
M.J.N. Priestley ◽  
M.J. Kowalsky

A seismic design procedure is developed to enable concrete buildings to be designed to achieve a specified acceptable level of damage under the design earthquake. The acceptable limit is defined as a displacement profile related to limit material strains or code specified drift limits. In this procedure, the elastic properties, including initial stiffness, strength and period, are the end product of the design rather than the starting point. It is shown that the procedure is simple to apply, and results in significant differences from the more conventional force-based procedure. Designs for multi-storey frame and wall buildings are presented, and target displacements are compared with results from inelastic time-history analysis.

2009 ◽  
Vol 25 (3) ◽  
pp. 583-605 ◽  
Author(s):  
Wei Chiang Pang ◽  
David V. Rosowsky

This paper presents a direct displacement design (DDD) procedure that can be used for seismic design of multistory wood-framed structures. The proposed procedure is applicable to any pure shear deforming system. The design procedure is a promising design tool for performance-based seismic design since it allows consideration of multiple performance objectives (e.g., damage limitation, safety requirements) without requiring the engineer to perform a complex finite element or nonlinear time-history analysis of the complete structure. A simple procedure based on normalized modal analysis is used to convert the code-specified acceleration response spectrum into a set of interstory drift spectra. These spectra can be used to determine the minimum stiffness required for each floor based on the drift limit requirements. Specific shear walls can then be directly selected from a database of backbone curves. The procedure is illustrated on the design of two three-story ATC-63 archetype buildings, and the results are validated using nonlinear time-history analysis.


Author(s):  
G. Michele Calvi ◽  
Daniel P. Abrams ◽  
Hugo Bachmann ◽  
Shaoliang Bai ◽  
Patricio Bonelli ◽  
...  

Author(s):  
Andrea Belleri ◽  
Simone Labò

AbstractThe seismic performance of precast portal frames typical of the industrial and commercial sector could be generally improved by providing additional mechanical devices at the beam-to-column joint. Such devices could provide an additional degree of fixity and energy dissipation in a joint generally characterized by a dry hinged connection, adopted to speed-up the construction phase. Another advantage of placing additional devices at the beam-to-column joint is the possibility to act as a fuse, concentrating the seismic damage on few sacrificial and replaceable elements. A procedure to design precast portal frames adopting additional devices is provided herein. The procedure moves from the Displacement-Based Design methodology proposed by M.J.N. Priestley, and it is applicable for both the design of new structures and the retrofit of existing ones. After the derivation of the required analytical formulations, the procedure is applied to select the additional devices for a new and an existing structural system. The validation through non-linear time history analyses allows to highlight the advantages and drawbacks of the considered devices and to prove the effectiveness of the proposed design procedure.


2013 ◽  
Vol 351-352 ◽  
pp. 1047-1051
Author(s):  
He Zhu ◽  
Gang Wang ◽  
Zhen Yue Ma ◽  
Yi Kang Su

A cohesive model (CM) was introduced in this paper. The constitutive response of cohesive behavior depends on a traction-separation description characterized by the initial stiffness, damage initiation threshold, and damage evolution properties.Through the aseismic analysis of a gravity dam, the displacement, stress and anti-sliding safety factor were discussed in the paper, the results were also compared between elastic model (EM) and plastic model (PM). The results shown that the displacement amplitude computed by PM and CM was nearly twice larger than that by EM, and the area of stress concentration became not so obvious. The cohesive model could efficiently simulate the discontinuous structure and the responses of seismic computed by PM and CM were more correspond to actual situation.


2013 ◽  
Vol 353-356 ◽  
pp. 2177-2180
Author(s):  
Hao Ming Cai ◽  
Zhong Tao ◽  
Xin Li Cao

In this paper, we calculate and analyze a tall building project of seismic isolation design. It is a frame-shear wall structure, which has twelve stories on the ground. And then, we use the time history analysis method to calculate the isolation structure. It is found that isolation equipment can extend the period of the structure, reduce the story drift in frequency earthquake. And it also can control the response of the structure. In rare earthquake, the story drift can meet the demand of unclasped; the displacement and force of the equipment can satisfy the demand of the code for seismic design of building.


Sign in / Sign up

Export Citation Format

Share Document