PROPERTIES OF THE PROTEROZOIC GEOMAGNETIC FIELD AND GEOLOGICAL APPLICATIONS OF PALEOMAGNETIC DATA FROM ROCKS OF THE NORTH AMERICAN MIDCONTINENT RIFT

Author(s):  
Evgeniy V. Kulakov
Tectonics ◽  
1989 ◽  
Vol 8 (2) ◽  
pp. 305-332 ◽  
Author(s):  
W. F. Cannon ◽  
Alan G. Green ◽  
D. R. Hutchinson ◽  
Myung Lee ◽  
Bernd Milkereit ◽  
...  

2021 ◽  
Author(s):  
Cemil Arkula ◽  
Nalan Lom ◽  
John Wakabayashi ◽  
Grant Rea-Downing ◽  
Mark Dekkers ◽  
...  

<p>The western edge of the North America plate contains geological records that formed during the long-lived convergence between plates of the Panthalassa Ocean and North America. The geology of different segments along western North America indicates different polarities (eastward and westward) for subducted slabs and thereby various tectonic histories and settings. The western United States (together with Mexico) plays a key role in this debate, many geologic interpretations assume continuous eastward subduction in contrast to observations within proximal geologic segments and tomographic images of the lower mantle below North America and the eastern Pacific Ocean which suggest a more complex subduction history. In this study, we aim to evaluate the plate tectonic setting in which the Jurassic ophiolites of California formed. Geochemical data from these ophiolites suggest that they formed above a nascent intra-oceanic or continental margin subduction zone. We first developed a kinematic reconstruction of the western US geology back to the Jurassic based on published structural geological data. Importantly, we update the reconstruction of the various branches of the San Andreas fault system to determine the relative position of the ophiolite fragments and adopt a previous restoration of Basin and Range extension which we expand northward towards Washington state. We then reconstruct North American margin deformation associated with Cretaceous to Paleogene shortening and strike-slip faulting. We find no clear candidates in the geological record that may have accommodated major subduction between the Jurassic ophiolite belt and the North American margin and consequently concur with the school of thought that considers that the ophiolite belt, as well as the underlying subduction-accretionary Franciscan Complex, likely formed in the North American fore-arc. We collected paleomagnetic data to reconstruct the spreading direction of the Jurassic Californian ophiolites, by providing new paleomagnetic data from sheeted dykes of the Josephine and Mt. Diablo Ophiolites. These suggest a NE-SW paleo-ridge orientation, oblique to the North American margin which may be explained by partitioning of a dextral component of subduction obliquity relative to North America. We used this spreading direction in combination with published ages of the ophiolites and our restoration of the relative position of these ophiolites prior to post-Jurassic deformation to construct a ridge-transform system at which the Jurassic ophiolites accreted. The results will be used to evaluate which parts of the subduction systems that existed in the eastern Panthalassa Ocean may reside in the western US, and which parts may be better sought in the northern Canadian Segment or/and in the southern Caribbean region.</p>


1976 ◽  
Vol 13 (4) ◽  
pp. 563-578 ◽  
Author(s):  
D. K. Bingham ◽  
M. E. Evans

Paleomagnetic results from 55 sampling sites throughout the Stark Formation are reported. The known stratigraphic sequence of these sites enables the behaviour of the geomagnetic field in these remote times (1750 m.y.) to be elucidated. Two polarity reversals are identified and these represent potentially useful correlative features in strata devoid of index fossils. One of these is investigated in detail and indicates that behaviour of the geomagnetic field during polarity reversals was essentially the same in the early Proterozoic as it has been over the last few million years. The pole position (145°W, 15°S, dp = 3.5, dm = 6.9) lies far to the west of that anticipated from earlier results, implying further complexity of the North American polar wander curve. Possible alternatives to this added complexity are discussed.


1997 ◽  
Vol 34 (4) ◽  
pp. 476-488 ◽  
Author(s):  
D. W. Davis ◽  
J. C. Green

Volcanism in the Midcontinent rift system lasted between 1108 and 1086 Ma. Rates of flood-basalt eruption and subsidence in the western Lake Superior region appear to have been greatest at the beginning of recorded activity (estimated 5 km/Ma subsidence rate at 1108 Ma) and rapidly waned over a period of 1–3 Ma during a magnetically reversed period. The age of the paleomagnetic polarity reversal is now constrained to be between 1105 ± 2 and 1102 ± 2 Ma. A resurgence of intense volcanism began at 1100 ± 2 Ma in the North Shore Volcanic Group and lasted until 1097 ± 2 Ma. This group contains a ca. 7 Ma time gap between magnetically reversed and normal volcanic sequences. A similar disconformity appears to exist in the upper part of the Powder Mill Group. The average subsidence rate during this period was approximately 3.7 km/Ma. Latitude variations measured from paleomagnetism on dated sequences indicate that the North American plate was drifting at a minimum rate of 22 cm/year during the early history of the Midcontinent rift. An abrupt slowdown to approximately 8 cm/year occurred at ca. 1095 Ma. These data support a mantle-plume origin for Midcontinent rift volcanism, with the plume head attached to and drifting with the continental lithosphere. Resurgence of flood-basalt magmatism at 1100 Ma may have been caused by extension of the superheated lithosphere following continental collision within the Grenville Orogen to the east.


2018 ◽  
Vol 123 (9) ◽  
pp. 7791-7805 ◽  
Author(s):  
Ben Chichester ◽  
Catherine Rychert ◽  
Nicholas Harmon ◽  
Suzan Lee ◽  
Andrew Frederiksen ◽  
...  

1992 ◽  
Vol 213 (1-2) ◽  
pp. 17-32 ◽  
Author(s):  
William J. Hinze ◽  
David J. Allen ◽  
Adam J. Fox ◽  
Don Sunwood ◽  
Timothy Woelk ◽  
...  

1992 ◽  
Vol 213 (1-2) ◽  
pp. 49-55 ◽  
Author(s):  
William F. Cannon ◽  
William J. Hinze

Sign in / Sign up

Export Citation Format

Share Document