The North American Midcontinent Rift beneath Lake Superior from Glimpce seismic reflection profiling

Tectonics ◽  
1989 ◽  
Vol 8 (2) ◽  
pp. 305-332 ◽  
Author(s):  
W. F. Cannon ◽  
Alan G. Green ◽  
D. R. Hutchinson ◽  
Myung Lee ◽  
Bernd Milkereit ◽  
...  
1997 ◽  
Vol 34 (4) ◽  
pp. 476-488 ◽  
Author(s):  
D. W. Davis ◽  
J. C. Green

Volcanism in the Midcontinent rift system lasted between 1108 and 1086 Ma. Rates of flood-basalt eruption and subsidence in the western Lake Superior region appear to have been greatest at the beginning of recorded activity (estimated 5 km/Ma subsidence rate at 1108 Ma) and rapidly waned over a period of 1–3 Ma during a magnetically reversed period. The age of the paleomagnetic polarity reversal is now constrained to be between 1105 ± 2 and 1102 ± 2 Ma. A resurgence of intense volcanism began at 1100 ± 2 Ma in the North Shore Volcanic Group and lasted until 1097 ± 2 Ma. This group contains a ca. 7 Ma time gap between magnetically reversed and normal volcanic sequences. A similar disconformity appears to exist in the upper part of the Powder Mill Group. The average subsidence rate during this period was approximately 3.7 km/Ma. Latitude variations measured from paleomagnetism on dated sequences indicate that the North American plate was drifting at a minimum rate of 22 cm/year during the early history of the Midcontinent rift. An abrupt slowdown to approximately 8 cm/year occurred at ca. 1095 Ma. These data support a mantle-plume origin for Midcontinent rift volcanism, with the plume head attached to and drifting with the continental lithosphere. Resurgence of flood-basalt magmatism at 1100 Ma may have been caused by extension of the superheated lithosphere following continental collision within the Grenville Orogen to the east.


1989 ◽  
Vol 126 (1) ◽  
pp. 1-8 ◽  
Author(s):  
W. S. McKerrow ◽  
N. J. Soper

AbstractThe position of the Iapetus Ocean suture can be traced between Ordovician fossil localities in the Southern Uplands and the Lake District which contain, respectively, distinct North American and European faunas. The Southern Uplands contains North American Caradoc faunas in the Northern Belt, and is considered to have been accreted onto the Laurentian (North American) margin between the Llandeilo and the end of the Wenlock. Deep seismic reflection profiling shows that a surface, probably parallel to the suture zone, dips down to the northwest from the Solway Line. In eastern Ireland, the surface trace of the suture coincides with the Navan Fault, which separates the Longford-Down massif from Ordovician sediments containing European faunas. The Navan–Silvermines Fault may represent the surface expression of the suture, but it is masked by Wenlock turbidites, which appear to have crossed over the plate boundary. Northward subduction of continental crust below the margin of Laurentia during the late Silurian may explain the influx of turbidite fans from the north or north west onto depressed crust to the south of the suture. Termination of subduction coincides with the widespread Acadian Orogeny in the Emsian (at 395±5 Ma).


1991 ◽  
Vol 28 (1) ◽  
pp. 145-150 ◽  
Author(s):  
Matthew L. Manson ◽  
Henry C. Halls

A Johnson-Sea-Link submersible was used to examine the geology of Superior Shoal in central Lake Superior. Here, glacially scoured, vertical cliffs, some more than 100 m high, are formed of 1.1 Ga middle Keweenawan basaltic lava flows displaying ophitic interiors and red amygdaloidal tops. Flat-lying sandstones, lithologically similar to the upper Keweenawan Bayfield–Jacobsville sequences, occur to the north of the volcanic rocks. These are inferred to have been downthrown along an eastward extension of the Isle Royale fault, a major boundary fault of the Midcontinent rift. The volcanic rocks are normally magnetized, supporting lithological evidence that they correlate with the middle Keweenawan sequence on Isle Royale. Paleomagnetic data suggest that the volcanics have a complex structure, possibly involving drag folding along the Isle Royale fault.


1994 ◽  
Vol 31 (4) ◽  
pp. 652-660 ◽  
Author(s):  
John L. Sexton ◽  
Harvey Henson Jr.

The interpretation of 1047 km of seismic reflection data collected in western Lake Superior is presented along with reflection traveltime contour maps and gravity models to understand the overall geometry of the Midcontinent Rift System beneath the lake. The Douglas, Isle Royale, and Keweenaw fault zones, clearly imaged on the seismic profiles, are interpreted to be large offset detachment faults associated with initial rifting. These faults have been reactivated as reverse faults with 3–5 km of throw. The Douglas Fault Zone is not directly connected with the Isle Royale Fault Zone. The seismic data has imaged two large basins filled with more than 22 km of middle Keweenawan pre-Portage Lake and Portage Lake volcanic rocks and up to 8 km of upper Keweenawan Oronto and Bayfield sedimentary rocks. These basins persisted throughout Keweenawan time and are separated by a ridge of Archean rocks and a narrow trough bounded by the Keweenaw Fault Zone to the south. Another fault zone, herein named the Ojibwa fault zone, previously interpreted as the northeastern extension of the Douglas Fault Zone, has been reinterpreted as a reverse fault that closely follows the ridge of Archean rocks. Previous researchers have stated that neighboring segments of the rift display alternating polarity of basins associated with large detachment faults. Accommodation zones have been previously interpreted to exist between rift segments; however, the seismic data do not image a clearly identifiable accommodation zone separating the two basins in western Lake Superior. Thus, the seismic profile may lie directly above the pivot of a scissors-type accommodation fault zone, there is no vertical offset associated with the zone, or the zone does not exist. Seismic data interpretations indicate that application of a simple alternating polarity basin – accommodation zone model is an oversimplification of the complex geological structures associated with the Midcontinent Rift System.


Sign in / Sign up

Export Citation Format

Share Document