scholarly journals INVESTIGATING THE EFFECTS OF SHORT- AND LONG-TERM CLIMATIC VARIATION ON THE WATER USE OF THREE NORTHERN HARDWOOD TREE SPECIES

2015 ◽  
Author(s):  
Alex R. Collins
1989 ◽  
Vol 19 (2) ◽  
pp. 225-231 ◽  
Author(s):  
Scott A. Enebak ◽  
Robert A. Blanchette

Cerrenaunicolor (Bull.: Fr.) Murr. (= Daedaleaunicolor) (Aphyllophorales, Polyporaceae) was found to cause a canker rot on two northern hardwood tree species, sugar maple (Acersaccharum Marsh.) and paper birch (Betulapapyrifera Marsh.). Pathogenicity of the fungus was determined by inoculation and examination of cankers 6 months, 1.5 years, and 2.5 years later. The two isolates used were found to differ in pathogenicity. Chemical and morphological barriers formed to compartmentalize the fungus. A zone of enhanced cell wall lignification and the formation of suberized impervious cells which composed the necrophylactic periderm in the host were observed. Xylem discoloration, callus formation, and periderm layers were more pronounced in maple than in birch. Cerrenaunicolor moved past host barriers via a mass of hyphae which annually penetrated weak points in the necrophylactic periderm and subsequently killed the adjacent cambium. Once past the necrophylactic periderm and into the xylem, C. unicolor was an aggressive decay organism which caused an extensive white rot. In naturally infected trees, columns of decay were two or three times longer than the cankers. Multiple zones of decayed and discolored wood were present in the xylem as a result of repeated attacks by the fungus.


2010 ◽  
Vol 26 (2) ◽  
pp. 215-226 ◽  
Author(s):  
M. A. Sobrado

Abstract:Leaf blade physical and chemical characteristics, wood composition and anatomy, as well as long-term water-use efficiency and hydraulic characteristics of leaf-bearing terminal branches were assessed in tree species growing in contrasting forests of the Venezuelan Amazonas: mixed forest on oxisol soil and caatinga on podzol soil. Two upper-canopy tree species were selected in each forest, and three individuals per species were tagged for sampling. Leaf nitrogen isotopic signatures (δ15N) were negative and species-specific, which suggests that in species of both forest the N-cycle is closed, and that tree species can withdraw N from a variety of N-pools. Leaf construction costs, dry mass to leaf area ratio, thickness and sclerophylly index tended to increase in microhabitats with lower fertility and large water table fluctuations. The hydraulic characteristics and long-term water use are species-specific and related to the particular conditions of the habitat at the local scale. Ocotea aciphylla (mixed forest) with a combination of low δ13C and high hydraulic sufficiency may maintain high water loss without risk of xylem embolisms. By contrast, Micranda sprucei (slopes of the caatinga forest), had a combination of relatively high hydraulic sufficiency and the highest long-term water-use efficiency, which suggest that embolism risk would be avoided by water loss restriction. Assuming a warmer and drier climate in the future, the species with more conservative water transport and/or better stomatal control would be at lower risk of mortality.


2021 ◽  
Vol 3 ◽  
Author(s):  
Yonghui Yang ◽  
Jicheng Wu ◽  
Yan-Lei Du ◽  
Cuimin Gao ◽  
Xiaoying Pan ◽  
...  

Water shortages and rainfall variability lead to a decrease in grain yield. Straw mulching (SM), subsoiling (S), and combined amendments (subsoiling + straw mulching, SS) are potential solutions for maintaining crop productivity and water resource sustainability. However, short- and long-term applications of these methods appear to result in different yield and water use efficiency outcomes. In this study, we, therefore, compared short- and long-term applications of SM, S, and SS, with a control. We analyzed field experimental data of wheat and maize cultivation with control (conventional tillage), SM, S, and SS treatments to assess the impact on yield and water use efficiency, resulting from short- and long-term applications of these practices. The results show that SS treatment led to higher soil water storage (SWS) compared with other treatments during the regreening, jointing, and booting stages of wheat, and the big bellmouth and filling stages of maize in the short- and long-term experiments. However, long-term SS treatment also led to higher SWS in the growth stage of wheat in 2015–2016 and in the growth stage of maize in 2015. Additionally, SS treatment was conducive to raising the net photosynthetic rate (Pn) and leaf water use efficiency (LWUE) of wheat compared with other treatments in 2015 and 2016. Conversely, Pn and LWUE of maize under S and SS treatments were higher (P < 0.05) compared with other treatments in the two studied years. Short-term treatment led to higher wheat yield compared with long term in 2014–2015 (ample rainfall) and of maize in 2016 (low rainfall). The yield of wheat under long-term S treatment in 2015 was 9625.-kg hm−2, which was the highest (P < 0.05) in 2 years, with a 17.7% increase compared with the control, followed by short-term S treatment. However, the water use efficiency (WUE) of wheat under long-term SS treatment in 2016 was the highest (P < 0.05) compared with other treatments. The yield of maize under SM and S treatments was higher than other treatments, whereas the WUE of maize under long-term SS treatment in 2016 was still the highest (P < 0.05). Our findings provide evidence that S and SS treatments improve both crop productivity and water resource sustainability, and long-term application resulted in higher productivity than short-term application.


2020 ◽  
Author(s):  
Raimundo Bermudez ◽  
Artur Stefanski ◽  
Rebecca A Montgomery ◽  
Peter B Reich

Abstract High latitude forests cope with considerable variation in moisture and temperature at multiple temporal scales. To assess how their photosynthetic physiology responds to short- and long-term temperature variation, we measured photosynthetic capacity for four tree species growing in an open-air experiment in the boreal-temperate ecotone `Boreal Forest Warming at an Ecotone in Danger' (B4WarmED). The experiment factorially manipulated temperature above- and below-ground (ambient, +3.2 °C) and summer rainfall (ambient, 40% removal). We measured A/Ci curves at 18, 25 and 32 °C for individuals of two boreal (Pinus banksiana Lamb., Betula papyrifera Marsh.) and two temperate species (Pinus strobus L., Acer rubrum L.) experiencing the long-term warming and/or reduced-rainfall conditions induced by our experimental treatments. We calculated the apparent photosynthetic capacity descriptors VCmax,Ci and Jmax,Ci and their ratio for each measurement temperate. We hypothesized that (i) VCmax,Ci and Jmax,Ci would be down-regulated in plants experiencing longer term (e.g., weeks to months) warming and reduced rainfall (i.e., have lower values at a given measurement temperature), as is sometimes found in the literature, and that (ii) plants growing at warmer temperatures or from warmer ranges would show greater sensitivity (steeper slope) to short-term (minutes to hours) temperature variation. Neither hypothesis was supported as a general trend across the four species, as there was not a significant main effect (across species) of either warming or rainfall reduction on VCmax,Ci and Jmax,Ci. All species markedly increased VCmax,Ci and Jmax,Ci (and decreased their ratio) with short-term increases in temperature (i.e., contrasting values at 18, 25 and 32 °C), and those responses were independent of long-term treatments and did not differ among species. The Jmax,Ci:VCmax,Ci ratio was, however, significantly lower across species in warmed and reduced rainfall treatments. Collectively, these results suggest that boreal trees possess considerable short-term plasticity that may allow homeostasis of VCmax,Ci and Jmax,Ci to a longer term temperature treatment. Our results also caution against extrapolating results obtained under controlled and markedly contrasting temperature treatments to responses of photosynthetic parameters to more modest temperature changes expected in the near-term with climate warming in field conditions.


Sign in / Sign up

Export Citation Format

Share Document