Leaf characteristics, wood anatomy and hydraulic properties in tree species from contrasting habitats within upper Rio Negro forests in the Amazon region

2010 ◽  
Vol 26 (2) ◽  
pp. 215-226 ◽  
Author(s):  
M. A. Sobrado

Abstract:Leaf blade physical and chemical characteristics, wood composition and anatomy, as well as long-term water-use efficiency and hydraulic characteristics of leaf-bearing terminal branches were assessed in tree species growing in contrasting forests of the Venezuelan Amazonas: mixed forest on oxisol soil and caatinga on podzol soil. Two upper-canopy tree species were selected in each forest, and three individuals per species were tagged for sampling. Leaf nitrogen isotopic signatures (δ15N) were negative and species-specific, which suggests that in species of both forest the N-cycle is closed, and that tree species can withdraw N from a variety of N-pools. Leaf construction costs, dry mass to leaf area ratio, thickness and sclerophylly index tended to increase in microhabitats with lower fertility and large water table fluctuations. The hydraulic characteristics and long-term water use are species-specific and related to the particular conditions of the habitat at the local scale. Ocotea aciphylla (mixed forest) with a combination of low δ13C and high hydraulic sufficiency may maintain high water loss without risk of xylem embolisms. By contrast, Micranda sprucei (slopes of the caatinga forest), had a combination of relatively high hydraulic sufficiency and the highest long-term water-use efficiency, which suggest that embolism risk would be avoided by water loss restriction. Assuming a warmer and drier climate in the future, the species with more conservative water transport and/or better stomatal control would be at lower risk of mortality.

2021 ◽  
Author(s):  
Mayu Matsumoto ◽  
Takashi Kiyomizu ◽  
Saya Yamagishi ◽  
Tomomitsu Kinoshita ◽  
Luisa Kumpitsch ◽  
...  

Abstract We conducted on-site studies in Kyoto City, Japan, to evaluate the effect of air pollution by automobile gas exhaust on the leaf photosynthetic functions of four urban roadside tree species. Nitrogen oxides (NO and NO2) are major air pollutants that are related to automobile gas exhaust. The species-specific response of leaf photosynthesis to air pollution was obtained for single-year data, in which at the high air pollution sites, Rhododendron × pulchrum, Rhaphiolepis indica, and Prunus × yedoensis had a higher restriction of maximum photosynthesis (Amax), while the opposite trend was obtained for Ginkgo biloba. When the data were pooled across the years from 2007 to 2019 in R. pulchrum, the dose-dependent effect of NO and NO2 on photosynthesis became obvious, in which they decreased Amax and increased the long-term leaf water use efficiency. A spatial variability map for R. pulchrum showed a lower Amax and higher water use efficiency at the heavy traffic areas in Kyoto City, which suggests that R. pulchrum increased tolerance to air pollution and water stress at the expense of the leaf photosynthesis. This study revealed the importance of the evaluation of the species-specific response of photosynthesis to air pollution for the efficient use of urban trees, even in regions with relatively low atmospheric pollution levels such as < 40 ppb of NO or NO2.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


Author(s):  
Ediglécia Pereira Almeida ◽  
Antonio Lucineudo Oliveira Freire ◽  
Ivonete Alves Bakke ◽  
Cheila Deisy Ferreira

2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20&ndash;60 cm, increased water recharge by 16&ndash;21 mm, and decreased ASWS by 89&ndash;133 mm in 0&ndash;300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246&ndash;1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was &lt; 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


2000 ◽  
Vol 40 (5) ◽  
pp. 643 ◽  
Author(s):  
D. P. Armstrong ◽  
J. E. Knee ◽  
P. T. Doyle ◽  
K. E. Pritchard ◽  
O. A. Gyles

A survey of 170 randomly selected, irrigated, dairy farms in northern Victoria and 9 in southern New South Wales was conducted to examine and benchmark the key factors influencing water-use efficiency. Water-use efficiency was defined as the amount of milk (kg milk fat plus protein) produced from pasture per megalitre of water (irrigation plus effective rainfall). Information on water-use, milk production, supplementary feeding, farm size and type, pasture management, and irrigation layout and management was collected for each farm by personal interview for the 1994–95 and 1995–96 seasons. The farms were ranked in the order of water-use efficiency with the average farm compared with the highest and lowest 10% of farms. The range in water-use efficiency was 25–115 kg milk fat plus protein/ML, with the highest 10% averaging 94 kg/ML and the lowest 10% averaging 35 kg/ML. The large range in water-use efficiency indicated potential for substantial improvement on many farms. The high water-use efficiency farms, when compared with the low group: (i) produced a similar amount of milk from less water (387 v. 572 ML) (P<0.05), less land (48 v. 83 ha) (P< 0.05) and a similar number of cows (152 v. 143 cows); (ii) had higher estimated pasture consumption per hectare (11.5 v. 5.5 t DM/ha) (P<0.01) and per megalitre (1.0 v. 0.5 t DM/ML) (P<0.01); (iii) had higher stocking rates (3.2 v. 1.8 cows/ha) (P<0.01); (iv) used higher rates of nitrogen fertiliser (59 v. 18 kg N/ha.year) (P<0.05) and tended to use more phosphorus fertiliser (64 v. 34 kg P/ha.year) (P<0.10); (v) used similar levels of supplementary feed (872 v. 729 kg concentrates/cow); (vi) had higher milk production per cow (396 v. 277 kg fat plus protein) (P<0.05); and (vii) directed a higher proportion of the estimated energy consumed by cows into milk production (53 v. 46%) (P<0.05). The survey data confirmed that irrigated dairy farm systems are complex and variable. For example, the amount of feed brought in from outside the milking area varied from 0 to 74% of the estimated total energy used by a milking herd. There was a large range in the level of supplement input amongst the farms in the high water-use efficiency group, and in the low water-use efficiency group. This indicates that the management of the farming system has a greater impact on the efficiency of water-use on irrigated dairy farms, than the type of system. The data from the survey provide information for individual farms, a measure of the water-use efficiency of the industry, and an indication of the quality of regional land and water resources.


2007 ◽  
Vol 57 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Hong-Xing Cao ◽  
Zheng-Bin Zhang ◽  
Ping Xu ◽  
Li-Ye Chu ◽  
Hong-Bo Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document