Modelación, Simulación y Control de Aerogeneradores con Generador de Inducción Doblemente Alimentado Utilizando Matlab

2015 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Vásquez ◽  
J. Játiva
Keyword(s):  

En este trabajo se presenta la modelación de los componentes aerodinámicos, mecánicos, eléctricos y de control del aerogenerador con generador de inducción doblemente alimentado (DFIG). La modelación es empleada para crear un programa en el software Matlab. Se utiliza el método de Runge Kutta de cuarto orden para solucionar las ecuaciones diferenciales existentes en la modelación. La estrategia de control del convertidor PWM bidireccional se base en la técnica de control vectorial que emplea marcos de referencia giratorios, la cual permite el control de las potencias activa y reactiva producidas por el DFIG. Se describe el proceso de inicialización del sistema aerogenerador con DFIG, para obtener las condiciones de estado estable antes de iniciar la simulación. Se analiza el comportamiento del aerogenerador con DFIG ante cambios de la velocidad del viento y fallas de corto circuito. Los resultados finales muestran que la potencia activa del DFIG varía de acuerdo al comportamiento de la velocidad del viento, mientras que la potencia reactiva permanece casi invariante. Los resultados obtenidos son comparados con los resultados del modelo del aerogenerador con DFIG existente en Simulink de Matlab.

1997 ◽  
Author(s):  
Jack Yoh ◽  
Xiaolin Zhong ◽  
Jack Yoh ◽  
Xiaolin Zhong
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1483
Author(s):  
Shanqin Chen

Weighted essentially non-oscillatory (WENO) methods are especially efficient for numerically solving nonlinear hyperbolic equations. In order to achieve strong stability and large time-steps, strong stability preserving (SSP) integrating factor (IF) methods were designed in the literature, but the methods there were only for one-dimensional (1D) problems that have a stiff linear component and a non-stiff nonlinear component. In this paper, we extend WENO methods with large time-stepping SSP integrating factor Runge–Kutta time discretization to solve general nonlinear two-dimensional (2D) problems by a splitting method. How to evaluate the matrix exponential operator efficiently is a tremendous challenge when we apply IF temporal discretization for PDEs on high spatial dimensions. In this work, the matrix exponential computation is approximated through the Krylov subspace projection method. Numerical examples are shown to demonstrate the accuracy and large time-step size of the present method.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1842
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Yuri A. Khakhalev ◽  
Theodore E. Simos ◽  
Charalampos Tsitouras

We consider the scalar autonomous initial value problem as solved by an explicit Runge-Kutta pair of orders 6 and 5. We focus on an efficient family of such pairs, which were studied extensively in previous decades. This family comes with 5 coefficients that one is able to select arbitrarily. We set, as a fitness function, a certain measure, which is evaluated after running the pair in a couple of relevant problems. Thus, we may adjust the coefficients of the pair, minimizing this fitness function using the differential evolution technique. We conclude with a method (i.e. a Runge-Kutta pair) which outperforms other pairs of the same two orders in a variety of scalar autonomous problems.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Yi Zhou ◽  
Lin Yang ◽  
Changyue Fan ◽  
...  

Abstract Aiming at the current development of drilling technology and the deepening of oil and gas exploration, we focus on better studying the nonlinear dynamic characteristics of the drill string under complex working conditions and knowing the real movement of the drill string during drilling. This paper firstly combines the actual situation of the well to establish the dynamic model of the horizontal drill string, and analyzes the dynamic characteristics, giving the expression of the force of each part of the model. Secondly, it introduces the piecewise constant method (simply known as PT method), and gives the solution equation. Then according to the basic parameters, the axial vibration displacement and vibration velocity at the test points are solved by the PT method and the Runge–Kutta method, respectively, and the phase diagram, the Poincare map, and the spectrogram are obtained. The results obtained by the two methods are compared and analyzed. Finally, the relevant experimental tests are carried out. It shows that the results of the dynamic model of the horizontal drill string are basically consistent with the results obtained by the actual test, which verifies the validity of the dynamic model and the correctness of the calculated results. When solving the drill string nonlinear dynamics, the results of the PT method is closer to the theoretical solution than that of the Runge–Kutta method with the same order and time step. And the PT method is better than the Runge–Kutta method with the same order in smoothness and continuity in solving the drill string nonlinear dynamics.


Sign in / Sign up

Export Citation Format

Share Document