scholarly journals Recovery of Fe and V via selective reduction–magnetic separation of vanadium-titanium magnetite concentrate

Author(s):  
Liwei Liu ◽  
Guofeng Li ◽  
Libing Zhao ◽  
Jinpeng Li ◽  
Yanfeng Li
Minerals ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 86 ◽  
Author(s):  
Gongjin Cheng ◽  
Zixian Gao ◽  
Mengyang Lv ◽  
He Yang ◽  
Xiangxin Xue

Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 426
Author(s):  
Renmin Li ◽  
Tao Liu ◽  
Yimin Zhang ◽  
Jing Huang

In this paper, a novel K2SO4/KCl composite roasting additive was used to extract vanadium from vanadium–titanium magnetite concentrate. Further, the mechanism of K2SO4/KCl for extracting vanadium was studied. The results indicate that the vanadium leaching efficiency reached 82.04%, an increase of 7.43% compared to that of single K2SO4 and 10.05% compared to single KCl under the following conditions: a total dosage of K2SO4/KCl of 7 wt % with a mass ratio of 6/4, a roasting temperature of 950 °C, a roasting time of 1 h, a leaching temperature of 95 °C, a sulfuric acid concentration of 10% (v/v: volume percentage), and a leaching time of 1.5 h with a liquid-to-solid ratio of 3 mL/g. Moreover, crystal chemistry analyses indicated that the essence of the vanadium extraction with roasting was the conversion of cubic crystal systemic vanadium-bearing magnetite (FeO(Fe,V)2O3) to trigonal crystal systemic hematite (α-Fe2O3), and as most Fe(V)–O bonds were broken with the reconstructed conversion, the dissociation of V(III) occurred. Furthermore, the main decomposition products of K2SO4/KCl were K2O, SO2, and Cl2. X-ray diffraction (XRD) and related SEM-EDS analyses indicated that there were mainly three aspects in the mechanism of K2SO4/KCl for extracting vanadium. Firstly, activated K2O could combine with vanadium to generate soluble KVO3 rather insoluble Ca(VO3)2; secondly, SO2 could react with CaO to form CaSO4 to prevent the generation of acid-consuming Ca(VO3)2, which was beneficial to the dissolution of vanadium-bearing sphene (Ca(Ti,V)SiO4O); thirdly, Cl2 could destroy the structure of hematite (Fe2O3) to reduce its wrapping extent to KVO3.


Minerals ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 25 ◽  
Author(s):  
Renmin Li ◽  
Tao Liu ◽  
Yimin Zhang ◽  
Jing Huang ◽  
Chengbao Xu

2017 ◽  
Vol 265 ◽  
pp. 913-918 ◽  
Author(s):  
Yu. Kapelyushin ◽  
V. Roshchin ◽  
A. Roshchin

Issues with existing vanadium beneficiation stimulate the development of new technologies for wasteless production of vanadium. The present work investigates a possibility of beneficiation of vanadium and titanium oxides in a low-titanium magnetite concentrate by using selective reduction and extraction of iron. Iron was selectively reduced by coal without melting and separated from the oxide (slag) phase during further smelting operation. After the liquid-phase separation vanadium and titanium oxides were accumulated in a slag phase. The following products were produced: slag, containing vanadium and titanium oxides, and iron with relatively low carbon content. The content of vanadium and titanium in a final product has increased in comparison to the initial concentrate.


Sign in / Sign up

Export Citation Format

Share Document