Existence of fixed points of weak enriched nonexpansive mappings in Banach spaces
In this work, we introduce and study a new class of weak enriched nonexpasive mappings which is a generalization of enriched nonexpansive mappings provided by Berinde [Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces], Carpathian J. Math., 35 (2019), No. 3, 293–304]. This class of mappings generalizes several important classes of nonlinear mappings. We prove some fixed point theorems regarding this kind of mappings which extend some important results in [Berinde, V., Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), No. 3, 293–304]. Moreover, some examples, to ensure the existence of these mappings and support our main theorems, are also given.