scholarly journals A Combinatorial Approach to Evaluation of Reliability of the Receiver Output for BPSK Modulation with Spatial Diversity

10.37236/1028 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
S. Bliudze ◽  
D. Krob

In the context of soft demodulation of a digital signal modulated with Binary Phase Shift Keying (BPSK) technique and in presence of spatial diversity, we show how the theory of symmetric functions can be used to compute the probability that the log-likelihood of a recieved bit is less than a given threshold $\varepsilon$. We show how such computation can be reduced to computing the probability that $U-V < \varepsilon$ (denoted $P(U-V < \varepsilon)$) where $U$ and $V$ are two real random variables such that $U=\sum_{i=1}^N |u_i|^2$ and $V=\sum_{i=1}^N |v_i|^2$ where the $u_i$'s and $v_i$'s are independent centered complex Gaussian variables with variances ${\Bbb E}[\,|u_i|^2\,]=\chi_i$ and ${\Bbb E}[\,|v_i|^2\,]=\delta_i$. We give two expressions in terms of symmetric functions over the alphabets $\Delta=(\delta_1,\dots,\delta_N)$ and $X=(\chi_1,\dots,\chi_N)$ for the first $2N-1$ coefficients of the Taylor expansion of $P(U-V < \varepsilon)$ in terms of $\varepsilon$. The first one is a quotient of multi-Schur functions involving two alphabets derived from alphabets $\Delta$ and $X$, which allows us to give an efficient algorithm for the computation of these coefficients. The second expression involves a certain sum of pairs of Schur functions $s_\lambda(\Delta)$ and $s_\mu(X)$ where $\lambda$ and $\mu$ are complementary shapes inside a $N\times N$ rectangle. We show that such a sum has a natural combinatorial interpretation in terms of what we call square tabloids with ribbons and that there is a natural extension of the Knuth correspondence that associates a (0,1)-matrix to each square tabloid with ribbon. We then show that we can completely characterise the (0,1)-matrices that arise from square tabloids with ribbons under this correspondence.

2012 ◽  
Vol 2 (1-2) ◽  
Author(s):  
The Cuong Dinh ◽  
Xuan Nam Tran ◽  
Huu-Tue Huynh

The idea of the Bit-Interleaved Coded Modulation with Iterative Decoding (BICM-ID) is applied to classic schemes of both parallel and serial concatenation of convolutional codes (PCCC and SCCC) with Binary Phase Shift Keying (BPSK) modulation. Simulation results show that slightly modified PCCC and SCCC schemes provide significant improved performance of the encoder in the error floor region in terms of much lower bit error rate (BER).


Author(s):  
Trio Adiono ◽  
Angga Pradana ◽  
Syifaul Fuada

The design, implementation, and demonstration of visible light communication (VLC) system using Binary Phase Shift Keying (BPSK) modulation has been presented in this short paper. Our system is applied for indoor environment purpose. The test result shows that our VLC system able to work properly as expected, the BPSK constellation can be formed wirelessly through a visible light link. We obtained 13.4 kbps of maximum data rate transfer.


Spektral ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nabila Khansa Hartono ◽  
Faradila Alvina Putri ◽  
Fitri Elvira Ananda

Spread spectrum is a data transmission technique that spreads out information spectrum energy signals in a frequency band that is much larger than the minimal spectrum. One of the spread spectrum techniques is Direct Sequence Spread Spectrum (DSSS). This research was built the simulation of DSSS on Binary Phase Shift Keying (BPSK) modulation using MATLAB software. The simulation results of this DSSS simulation are displaying information wave signals, PN codes, signals that have been added with PN codes, signals modulated with BPSK, modulation signals that have been added with AWGN noise, demodulation signals, DSSS output signals and BER vs SNR graphics on the channel AWGN. The simulator of DSSS on BPKS in this research have been running according to the DSSS signal order flow and theoretical concept.   Keywords: AWGN, BPSK , DSSS, PN Code, PN Sequence


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4347
Author(s):  
Boyun Lyu ◽  
Yu Hua ◽  
Jiangbin Yuan ◽  
Shifeng Li

The Enhanced Loran (eLoran) system is valued for its important role in the positioning, navigation, and timing fields; however, with its current modulation methods, low data rate restricts its development. Ultra narrow band (UNB) modulation is a modulation method with extremely high spectrum utilization. If UNB modulation can be applied to the eLoran system, it will be very helpful. The extended binary phase shift keying modulation in UNB modulation is selected for a detailed study, parameters and application model are designed according to its unique characteristics of signal time and frequency domains, and it is verified through simulation that the application of this modulation not only meets the design constraints of the eLoran system but also does not affect the reception of the respective signals of both parties. Several feasible schemes are compared, analyzed, and selected. Studies have revealed that application of UNB modulation in the eLoran system is feasible, and it will increase the data rate of the system by dozens of times.


2018 ◽  
Vol 162 ◽  
pp. 165-175 ◽  
Author(s):  
J.A. Michel-Macarty ◽  
M.A. Murillo-Escobar ◽  
R.M. López-Gutiérrez ◽  
C. Cruz-Hernández ◽  
L. Cardoza-Avendaño

Sign in / Sign up

Export Citation Format

Share Document