scholarly journals Chromatic Index, Treewidth and Maximum Degree

10.37236/6042 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Henning Bruhn ◽  
Laura Gellert ◽  
Richard Lang

We conjecture that any graph $G$ with treewidth $k$ and maximum degree $\Delta(G)\geq k + \sqrt{k}$ satisfies $\chi'(G)=\Delta(G)$. In support of the conjecture we prove its fractional version. We also show that any graph $G$ with treewidth $k\geq 4$ and maximum degree $2k-1$ satisfies $\chi'(G)=\Delta(G)$, extending an old result of Vizing.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.



10.37236/1551 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas Niessen

Let $G$ be a simple graph with $3\Delta (G) > |V|$. The Overfull Graph Conjecture states that the chromatic index of $G$ is equal to $\Delta (G)$, if $G$ does not contain an induced overfull subgraph $H$ with $\Delta (H) = \Delta (G)$, and otherwise it is equal to $\Delta (G) +1$. We present an algorithm that determines these subgraphs in $O(n^{5/3}m)$ time, in general, and in $O(n^3)$ time, if $G$ is regular. Moreover, it is shown that $G$ can have at most three of these subgraphs. If $2\Delta (G) \geq |V|$, then $G$ contains at most one of these subgraphs, and our former algorithm for this situation is improved to run in linear time.



10.37236/7451 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Ralph Keusch

We study the two-player game where Maker and Breaker alternately color the edges of a given graph $G$ with $k$ colors such that adjacent edges never get the same color. Maker's goal is to play such that at the end of the game, all edges are colored. Vice-versa, Breaker wins as soon as there is an uncolored edge where every color is blocked. The game chromatic index $\chi'_g(G)$ denotes the smallest $k$ for which Maker has a winning strategy.The trivial bounds $\Delta(G) \le \chi_g'(G) \le 2\Delta(G)-1$ hold for every graph $G$, where $\Delta(G)$ is the maximum degree of $G$. Beveridge, Bohman, Frieze, and Pikhurko conjectured that there exists a constant $c>0$ such that for any graph $G$ it holds $\chi'_g(G) \le (2-c)\Delta(G)$ [Theoretical Computer Science 2008], and verified the statement for all $\delta>0$ and all graphs with $\Delta(G) \ge (\frac12+\delta)|V(G)|$. In this paper, we show that $\chi'_g(G) \le (2-c)\Delta(G)$ is true for all graphs $G$ with $\Delta(G) \ge C \log |V(G)|$. In addition, we consider a biased version of the game where Breaker is allowed to color $b$ edges per turn and give bounds on the number of colors needed for Maker to win this biased game.



10.37236/2101 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Mikio Kano ◽  
Saieed Akbari ◽  
Maryam Ghanbari ◽  
Mohammad Javad Nikmehr

Let $G$ be a graph. The core of $G$, denoted by $G_{\Delta}$, is the subgraph of $G$ induced by the vertices of degree $\Delta(G)$, where $\Delta(G)$ denotes the maximum degree of $G$. A $k$-edge coloring of $G$ is a function $f:E(G)\rightarrow L$ such that $|L| = k$ and $f(e_1)\neq f(e_2)$ for all two adjacent edges  $e_1$ and $e_2$ of $G$. The chromatic index of $G$, denoted by $\chi'(G)$, is the minimum number $k$ for which $G$ has a $k$-edge coloring.  A graph $G$ is said to be Class $1$ if $\chi'(G) = \Delta(G)$ and Class $2$ if $\chi'(G) = \Delta(G) + 1$. In this paper it is shown that every connected graph $G$ of even order and with $\Delta(G_{\Delta})\leq 2$ is Class $1$ if $|G_{\Delta}|\leq 9$ or $G_{\Delta}$ is a cycle of order $10$.



10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.



10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.



1986 ◽  
Vol 100 (2) ◽  
pp. 303-317 ◽  
Author(s):  
A. G. Chetwynd ◽  
A. J. W. Hilton

The graphs we consider here are either simple graphs, that is they have no loops or multiple edges, or are multigraphs, that is they may have more than one edge joining a pair of vertices, but again have no loops. In particular we shall consider a special kind of multigraph, called a star-multigraph: this is a multigraph which contains a vertex v*, called the star-centre, which is incident with each non-simple edge. An edge-colouring of a multigraph G is a map ø: E(G)→, where is a set of colours and E(G) is the set of edges of G, such that no two edges receiving the same colour have a vertex in common. The chromatic index, or edge-chromatic numberχ′(G) of G is the least value of || for which an edge-colouring of G exists. Generalizing a well-known theorem of Vizing [14], we showed in [6] that, for a star-multigraph G,where Δ(G) denotes the maximum degree (that is, the maximum number of edges incident with a vertex) of G. Star-multigraphs for which χ′(G) = Δ(G) are said to be Class 1, and otherwise they are Class 2.



2019 ◽  
Vol 346 ◽  
pp. 125-133
Author(s):  
João Pedro W. Bernardi ◽  
Murilo V.G. da Silva ◽  
André Luiz P. Guedes ◽  
Leandro M. Zatesko


2002 ◽  
Vol 11 (1) ◽  
pp. 103-111 ◽  
Author(s):  
VAN H. VU

Suppose that G is a graph with maximum degree d(G) such that, for every vertex v in G, the neighbourhood of v contains at most d(G)2/f (f > 1) edges. We show that the list chromatic number of G is at most Kd(G)/log f, for some positive constant K. This result is sharp up to the multiplicative constant K and strengthens previous results by Kim [9], Johansson [7], Alon, Krivelevich and Sudakov [3], and the present author [18]. This also motivates several interesting questions.As an application, we derive several upper bounds for the strong (list) chromatic index of a graph, under various assumptions. These bounds extend earlier results by Faudree, Gyárfás, Schelp and Tuza [6] and Mahdian [13] and determine, up to a constant factor, the strong (list) chromatic index of a random graph. Another application is an extension of a result of Kostochka and Steibitz [10] concerning the structure of list critical graphs.



2006 ◽  
Vol 154 (9) ◽  
pp. 1317-1323 ◽  
Author(s):  
Stephan Dominique Andres


Sign in / Sign up

Export Citation Format

Share Document