scholarly journals On Counting Permutations by Pairs of Congruence Classes of Major Index

10.37236/1638 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Hélène Barcelo ◽  
Robert Maule ◽  
Sheila Sundaram

For a fixed positive integer $n,$ let $S_n$ denote the symmetric group of $n!$ permutations on $n$ symbols, and let maj${(\sigma)}$ denote the major index of a permutation $\sigma.$ Fix positive integers $k < \ell\leq n,$ and nonnegative integers $i,j.$ Let $m_n(i\backslash k; j\backslash \ell)$ denote the cardinality of the set $\{\sigma\in S_n:$ maj$(\sigma)\equiv i \pmod k,$ maj$ (\sigma^{-1})\equiv j \pmod \ell\}.$ In this paper we use combinatorial methods to investigate these numbers. Results of Gordon and Roselle imply that when $k,$ $\ell$ are relatively prime, $$ m_n(i\backslash k; j\backslash \ell)= { {n!}\over{k\cdot\ell}} .$$ We give a combinatorial proof of this in the case when $\ell$ divides $n-1$ and $k$ divides $n.$

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


1966 ◽  
Vol 9 (4) ◽  
pp. 515-516
Author(s):  
Paul G. Bassett

Let n be an arbitrary but fixed positive integer. Let Tn be the set of all monotone - increasing n-tuples of positive integers:1Define2In this note we prove that ϕ is a 1–1 mapping from Tn onto {1, 2, 3,…}.


Integers ◽  
2010 ◽  
Vol 10 (6) ◽  
Author(s):  
Hayri Ardal

AbstractThe well-known Brown's lemma says that for every finite coloring of the positive integers, there exist a fixed positive integer


2021 ◽  
Vol 6 (10) ◽  
pp. 10596-10601
Author(s):  
Yahui Yu ◽  
◽  
Jiayuan Hu ◽  

<abstract><p>Let $ k $ be a fixed positive integer with $ k &gt; 1 $. In 2014, N. Terai <sup>[<xref ref-type="bibr" rid="b6">6</xref>]</sup> conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. This is still an unsolved problem as yet. For any positive integer $ n $, let $ Q(n) $ denote the squarefree part of $ n $. In this paper, using some elementary methods, we prove that if $ k\equiv 3 $ (mod 4) and $ Q(k-1)\ge 2.11 $ log $ k $, then the equation has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. It can thus be seen that Terai's conjecture is true for almost all positive integers $ k $ with $ k\equiv 3 $(mod 4).</p></abstract>


2019 ◽  
Vol 12 (3) ◽  
pp. 51-68
Author(s):  
Oleg Gutik ◽  
Anatolii Savchuk

In this paper we study the structure of the monoid Iℕn ∞ of  cofinite partial isometries of the n-th power of the set of positive integers ℕ with the usual metric for a positive integer n > 2. We describe the group of units and the subset of idempotents of the semigroup Iℕn ∞, the natural partial order and Green's relations on Iℕn ∞. In particular we show that the quotient semigroup Iℕn ∞/Cmg, where Cmg is the minimum group congruence on Iℕn ∞, is isomorphic to the symmetric group Sn and D = J in Iℕn ∞. Also, we prove that for any integer n ≥2 the semigroup Iℕn ∞  is isomorphic to the semidirect product Sn ×h(P∞(Nn); U) of the free semilattice with the unit (P∞(Nn); U)  by the symmetric group Sn.


2018 ◽  
Vol 107 (02) ◽  
pp. 272-288
Author(s):  
TOPI TÖRMÄ

We study generalized continued fraction expansions of the form $$\begin{eqnarray}\frac{a_{1}}{N}\frac{}{+}\frac{a_{2}}{N}\frac{}{+}\frac{a_{3}}{N}\frac{}{+}\frac{}{\cdots },\end{eqnarray}$$ where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$ . We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$ . In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$ , a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.


2007 ◽  
Vol 03 (01) ◽  
pp. 43-84 ◽  
Author(s):  
FRANK G. GARVAN ◽  
HAMZA YESILYURT

Let S and T be sets of positive integers and let a be a fixed positive integer. An a-shifted partition identity has the form [Formula: see text] Here p(S,n) is the number partitions of n whose parts are elements of S. For all known nontrivial shifted partition identities, the sets S and T are unions of arithmetic progressions modulo M for some M. In 1987, Andrews found two 1-shifted examples (M = 32, 40) and asked whether there were any more. In 1989, Kalvade responded with a further six. In 2000, the first author found 59 new 1-shifted identities using a computer search and showed how these could be proved using the theory of modular functions. Modular transformation of certain shifted identities leads to shiftless partition identities. Again let a be a fixed positive integer, and S, T be distinct sets of positive integers. A shiftless partition identity has the form [Formula: see text] In this paper, we show, except in one case, how all known 1-shifted and shiftless identities follow from a four-parameter theta-function identity due to Jacobi. New shifted and shiftless partition identities are proved.


1997 ◽  
Vol 20 (2) ◽  
pp. 409-411
Author(s):  
Vishnu Gupta

In this paper we prove that ifRis a ring with1as an identity element in whichxm−xn∈Z(R)for allx∈Rand fixed relatively prime positive integersmandn, one of which is even, thenRis commutative. Also we prove that ifRis a2-torsion free ring with1in which(x2k)n+1−(x2k)n∈Z(R)for allx∈Rand fixed positive integernand non-negative integerk, thenRis commutative.


2008 ◽  
Vol 17 (4) ◽  
pp. 495-509 ◽  
Author(s):  
CHARLOTTE BRENNAN ◽  
ARNOLD KNOPFMACHER ◽  
STEPHAN WAGNER

A partition of a positive integer n is a finite sequence of positive integers a1, a2, . . ., ak such that a1+a2+ċ ċ ċ+ak=n and ai+1 ≥ ai for all i. Let d be a fixed positive integer. We say that we have an ascent of size d or more if ai+1 ≥ ai+d.We determine the mean, the variance and the limiting distribution of the number of ascents of size d or more (equivalently, the number of distinct part sizes of multiplicity d or more) in the partitions of n.


2013 ◽  
Vol 09 (04) ◽  
pp. 939-943 ◽  
Author(s):  
CRISTIAN-SILVIU RADU ◽  
JAMES A. SELLERS

In 2007, Andrews and Paule introduced the family of functions Δk(n) which enumerate the number of broken k-diamond partitions for a fixed positive integer k. In that paper, Andrews and Paule proved that, for all n ≥ 0, Δ1(2n+1) ≡ 0 (mod 3) using a standard generating function argument. Soon after, Shishuo Fu provided a combinatorial proof of this same congruence. Fu also utilized this combinatorial approach to naturally define a generalization of broken k-diamond partitions which he called k dots bracelet partitions. He denoted the number of k dots bracelet partitions of n by 𝔅k(n) and proved various congruence properties for these functions modulo primes and modulo powers of 2. In this note, we extend the set of congruences proven by Fu by proving the following congruences: For all n ≥ 0, [Formula: see text] We also conjecture an infinite family of congruences modulo powers of 7 which are satisfied by the function 𝔅7.


Sign in / Sign up

Export Citation Format

Share Document