scholarly journals Anti-Codes in Terms of Berlekamp's Switching Game

10.37236/17 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Uwe Schauz

We view a linear code (subspace) $C\leq\mathbb{F}_{q}^n$ as a light pattern on the \(n\)-dimensional Berlekamp Board $\mathbb{F}_{q}^n$ with $q^n$ light bulbs. The lights corresponding to elements of $C$ are ON, the others are OFF. Then we allow axis-parallel switches of complete rows, columns, etc. We show that the dual code $C^\perp$ contains a vector $v$ of full weight, i.e. $v_1,v_2,\dots,v_n\neq0$, if and only if the light pattern $C$ cannot be switched off. Generalizations of this allow us to describe anti-codes with maximal weight $\delta$ in a similar way, or, alternatively, in terms of a switching game in projective space. We provide convenient bases and normal forms to the modules of all light patterns of the generalized games. All our proofs are purely combinatorial and simpler than the algebraic ones used for similar results about anti-codes in $\mathbb{Z}_k^n$.  Aside from coding theory, the game is also of interest in the study of nowhere-zero points of matrices and nowhere-zero flows and colorings of graphs.


10.37236/552 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Uwe Schauz

We work with a unifying linear algebra formulation for nowhere-zero flows and colorings of graphs and matrices. Given a subspace (code) $U\leq{\mathbb{Z}_k^n}$ – e.g. the bond or the cycle space over ${\mathbb{Z}}_k$ of an oriented graph – we call a nowhere-zero tuple $f\in{\mathbb{Z}_k^n}$ a flow of $U$ if $f$ is orthogonal to $U$. In order to detect flows, we view the subspace $U$ as a light pattern on the $n$-dimensional Berlekamp Board ${\mathbb{Z}_k^n}$ with $k^n$ light bulbs. The lights corresponding to elements of $U$ are ON, the others are OFF. Then we allow axis-parallel switches of complete rows, columns, etc. The core result of this paper is that the subspace $U$ has a flow if and only if the light pattern $U$ cannot be switched off. In particular, a graph $G$ has a nowhere-zero $k$-flow if and only if the ${\mathbb{Z}}_k$-bond space of $G$ cannot be switched off. It has a vertex coloring with $k$ colors if and only if a certain corresponding code over ${\mathbb{Z}}_k$ cannot be switched off. Similar statements hold for Tait colorings, and for nowhere-zero points of matrices. Studying different normal forms to equivalence classes of light patterns, we find various new equivalents, e.g., for the Four Color Problem, Tutte's Flow Conjectures and Jaeger's Conjecture. Two of our equivalents for colorability and existence of nowhere zero flows of graphs include as special cases results by Matiyasevich, by Balázs Szegedy, and by Onn. Alon and Tarsi's sufficient condition for $k$-colorability also arrives, remarkably, as a generalized full equivalent.



2019 ◽  
Vol 12 (2) ◽  
pp. 668-679
Author(s):  
Basri Çalışkan ◽  
Kemal Balıkçı

In Algebraic Coding Theory, all linear codes are described by generator matrices. Any linear code has many generator matrices which are equivalent. It is important to find the number of the generator matrices for constructing of these codes. In this paper, we study Z_2 Z_4 Z_8-additive codes, which are the extension of recently introduced Z_2 Z_4-additive codes. We count the number of arbitrary Z_2 Z_4 Z_8-additive codes. Then we investigate connections to Z_2 Z_4 and Z_2 Z_8-additive codes with Z_2 Z_4 Z_8, and give some illustrative examples.



2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

<p style='text-indent:20px;'>The length function <inline-formula><tex-math id="M3">\begin{document}$ \ell_q(r,R) $\end{document}</tex-math></inline-formula> is the smallest length of a <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>-ary linear code with codimension (redundancy) <inline-formula><tex-math id="M5">\begin{document}$ r $\end{document}</tex-math></inline-formula> and covering radius <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula>. In this work, new upper bounds on <inline-formula><tex-math id="M7">\begin{document}$ \ell_q(tR+1,R) $\end{document}</tex-math></inline-formula> are obtained in the following forms:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{split} &amp;(a)\; \ell_q(r,R)\le cq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(a)\; } q\;{\rm{ is \;an\; arbitrary \;prime\; power}},\; c{\rm{ \;is\; independent \;of\; }}q. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \begin{split} &amp;(b)\; \ell_q(r,R)&lt; 3.43Rq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(b)\; } q\;{\rm{ is \;an\; arbitrary\; prime \;power}},\; q\;{\rm{ is \;large\; enough}}. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>In the literature, for <inline-formula><tex-math id="M8">\begin{document}$ q = (q')^R $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M9">\begin{document}$ q' $\end{document}</tex-math></inline-formula> a prime power, smaller upper bounds are known; however, when <inline-formula><tex-math id="M10">\begin{document}$ q $\end{document}</tex-math></inline-formula> is an arbitrary prime power, the bounds of this paper are better than the known ones.</p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M11">\begin{document}$ t = 1 $\end{document}</tex-math></inline-formula>, we use a one-to-one correspondence between <inline-formula><tex-math id="M12">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes and <inline-formula><tex-math id="M13">\begin{document}$ (R-1) $\end{document}</tex-math></inline-formula>-saturating <inline-formula><tex-math id="M14">\begin{document}$ n $\end{document}</tex-math></inline-formula>-sets in the projective space <inline-formula><tex-math id="M15">\begin{document}$ \mathrm{PG}(R,q) $\end{document}</tex-math></inline-formula>. A new construction of such saturating sets providing sets of small size is proposed. Then the <inline-formula><tex-math id="M16">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes, obtained by geometrical methods, are taken as the starting ones in the lift-constructions (so-called "<inline-formula><tex-math id="M17">\begin{document}$ q^m $\end{document}</tex-math></inline-formula>-concatenating constructions") for covering codes to obtain infinite families of codes with growing codimension <inline-formula><tex-math id="M18">\begin{document}$ r = tR+1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}$ t\ge1 $\end{document}</tex-math></inline-formula>.</p>



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Toshiharu Sawashima ◽  
Tatsuya Maruta

<p style='text-indent:20px;'>One of the fundamental problems in coding theory is to find <inline-formula><tex-math id="M3">\begin{document}$ n_q(k,d) $\end{document}</tex-math></inline-formula>, the minimum length <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula> for which a linear code of length <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula>, dimension <inline-formula><tex-math id="M6">\begin{document}$ k $\end{document}</tex-math></inline-formula>, and the minimum weight <inline-formula><tex-math id="M7">\begin{document}$ d $\end{document}</tex-math></inline-formula> over the field of order <inline-formula><tex-math id="M8">\begin{document}$ q $\end{document}</tex-math></inline-formula> exists. The problem of determining the values of <inline-formula><tex-math id="M9">\begin{document}$ n_q(k,d) $\end{document}</tex-math></inline-formula> is known as the optimal linear codes problem. Using the geometric methods through projective geometry and a new extension theorem given by Kanda (2020), we determine <inline-formula><tex-math id="M10">\begin{document}$ n_3(6,d) $\end{document}</tex-math></inline-formula> for some values of <inline-formula><tex-math id="M11">\begin{document}$ d $\end{document}</tex-math></inline-formula> by proving the nonexistence of linear codes with certain parameters.</p>



Author(s):  
Hamish L. Fraser

The topic of strain and lattice parameter measurements using CBED is discussed by reference to several examples. In this paper, only one of these examples is referenced because of the limitation of length. In this technique, scattering in the higher order Laue zones is used to determine local lattice parameters. Work (e.g. 1) has concentrated on a model strained-layer superlattice, namely Si/Gex-Si1-x. In bulk samples, the strain is expected to be tetragonal in nature with the unique axis parallel to [100], the growth direction. When CBED patterns are recorded from the alloy epi-layers, the symmetries exhibited by the patterns are not tetragonal, but are in fact distorted from this to lower symmetries. The spatial variation of the distortion close to a strained-layer interface has been assessed. This is most readily noted by consideration of Fig. 1(a-c), which show enlargements of CBED patterns for various locations and compositions of Ge. Thus, Fig. 1(a) was obtained with the electron beam positioned in the center of a 5Ge epilayer and the distortion is consistent with an orthorhombic distortion. When the beam is situated at about 150 nm from the interface, the same part of the CBED pattern is shown in Fig. 1(b); clearly, the symmetry exhibited by the mirror planes in Fig. 1 is broken. Finally, when the electron beam is positioned in the center of a 10Ge epilayer, the CBED pattern yields the result shown in Fig. 1(c). In this case, the break in the mirror symmetry is independent of distance form the heterointerface, as might be expected from the increase in the mismatch between 5 and 10%Ge, i.e. 0.2 to 0.4%, respectively. From computer simulation, Fig.2, the apparent monocline distortion corresponding to the 5Ge epilayer is quantified as a100 = 0.5443 nm, a010 = 0.5429 nm and a001 = 0.5440 nm (all ± 0.0001 nm), and α = β = 90°, γ = 89.96 ± 0.02°. These local symmetry changes are most likely due to surface relaxation phenomena.



Author(s):  
Shui-Nee Chow ◽  
Chengzhi Li ◽  
Duo Wang


Author(s):  
San Ling ◽  
Chaoping Xing
Keyword(s):  


Author(s):  
P. J. Cameron ◽  
J. H. van Lint


2003 ◽  
Vol 15 (2) ◽  
pp. 69-71 ◽  
Author(s):  
Thomas W. Schubert

Abstract. The sense of presence is the feeling of being there in a virtual environment. A three-component self report scale to measure sense of presence is described, the components being sense of spatial presence, involvement, and realness. This three-component structure was developed in a survey study with players of 3D games (N = 246) and replicated in a second survey study (N = 296); studies using the scale for measuring the effects of interaction on presence provide evidence for validity. The findings are explained by the Potential Action Coding Theory of presence, which assumes that presence develops from mental model building and suppression of the real environment.



1996 ◽  
Vol 41 (6) ◽  
pp. 587-588
Author(s):  
Valerie A. Thompson


Sign in / Sign up

Export Citation Format

Share Document