scholarly journals Using Homological Duality in Consecutive Pattern Avoidance

10.37236/2005 ◽  
2011 ◽  
Vol 18 (2) ◽  
Author(s):  
Anton Khoroshkin ◽  
Boris Shapiro

Using an approach suggested by Dotsenko and Khoroshkin we present a sufficient condition guaranteeing that two collections of patterns of permutations have the same exponential generating functions for the number of permutations avoiding elements of these collections as consecutive patterns. In short, the coincidence of the latter generating functions is guaranteed by a length-preserving bijection of patterns in these collections which is identical on the overlappings of pairs of patterns where the overlappings are considered as unordered sets. Our proof is based on a direct algorithm for the computation of the inverse generating functions. As an application we present a large class of patterns where this algorithm is fast and, in particular, allows us to obtain a linear ordinary differential equation with polynomial coefficients satisfied by the inverse generating function.

A constructive approach is given, closely based on the work of Ford (1936) for continuing analytically a power series solution of a linear ordinary differential equation with polynomial coefficients outside the circle of convergence.


2020 ◽  
Vol 27 (4) ◽  
pp. 593-603 ◽  
Author(s):  
Kemal Özen

AbstractIn this work, the solvability of a generally nonlocal problem is investigated for a third order linear ordinary differential equation with variable principal coefficient. A novel adjoint problem and Green’s functional are constructed for a completely nonhomogeneous problem. Several illustrative applications for the theoretical results are provided.


Author(s):  
Robert Laister ◽  
Mikołaj Sierżęga

Abstract We derive a blow-up dichotomy for positive solutions of fractional semilinear heat equations on the whole space. That is, within a certain class of convex source terms, we establish a necessary and sufficient condition on the source for all positive solutions to become unbounded in finite time. Moreover, we show that this condition is equivalent to blow-up of all positive solutions of a closely-related scalar ordinary differential equation.


Author(s):  
K. K. Tam

AbstractA model for thermal ignition by intense light is studied. The governing non-linear parabolic equation is linearized in a two-step manner with the aid of a non-linear ordinary differential equation which captures the salient features of the non-linear parabolic equation. The critical parameters are computed from the steady-state solution of the ordinary differential equation, which can be obtained without actually solving the equation. Comparison with available data shows that the present method yields good results.


2012 ◽  
Vol 17 (4) ◽  
pp. 571-588 ◽  
Author(s):  
Kemal Ozen ◽  
Kamil Orucoglu

In this work, we investigate a linear completely nonhomogeneous nonlocal multipoint problem for an m-order ordinary differential equation with generally variable nonsmooth coefficients satisfying some general properties such as p-integrability and boundedness. A system of m + 1 integro-algebraic equations called the special adjoint system is constructed for this problem. Green's functional is a solution of this special adjoint system. Its first component corresponds to Green's function for the problem. The other components correspond to the unit effects of the conditions. A solution to the problem is an integral representation which is based on using this new Green's functional. Some illustrative implementations and comparisons are provided with some known results in order to demonstrate the advantages of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document