scholarly journals Rainbow Matchings of Size $\delta(G)$ in Properly Edge-Colored Graphs

10.37236/2443 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Jennifer Diemunsch ◽  
Michael Ferrara ◽  
Allan Lo ◽  
Casey Moffatt ◽  
Florian Pfender ◽  
...  

A rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Wang asked if there is a function $f(\delta)$ such that a properly edge-colored graph $G$ with minimum degree $\delta$ and order at least $f(\delta)$ must have a rainbow matching of size $\delta$. We answer this question in the affirmative; an extremal approach yields that $f(\delta) = 98\delta/23< 4.27\delta$ suffices. Furthermore, we give an $O(\delta(G)|V(G)|^2)$-time algorithm that generates such a matching in a properly edge-colored graph of order at least $6.5\delta$. 

10.37236/649 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Guanghui Wang

Let $G$ be a properly edge colored graph. A rainbow matching of $G$ is a matching in which no two edges have the same color. Let $\delta$ denote the minimum degree of $G$. We show that if $|V(G)|\geq \frac{8\delta}{5}$, then $G$ has a rainbow matching of size at least $\lfloor\frac {3 \delta }{5}\rfloor$. We also prove that if $G$ is a properly colored triangle-free graph, then $G$ has a rainbow matching of size at least $\lfloor\frac {2 \delta }{3}\rfloor$.


10.37236/475 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Timothy D. LeSaulnier ◽  
Christopher Stocker ◽  
Paul S. Wenger ◽  
Douglas B. West

A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. The color degree of a vertex $v$ is the number of different colors on edges incident to $v$. Wang and Li conjectured that for $k\geq 4$, every edge-colored graph with minimum color degree at least $k$ contains a rainbow matching of size at least $\left\lceil k/2 \right\rceil$. We prove the slightly weaker statement that a rainbow matching of size at least $\left\lfloor k/2 \right\rfloor$ is guaranteed. We also give sufficient conditions for a rainbow matching of size at least $\left\lceil k/2 \right\rceil$ that fail to hold only for finitely many exceptions (for each odd $k$).


10.37236/7049 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
András Gyárfás ◽  
Gábor Sárközy

It is well-known that in every $k$-coloring of the edges of the complete graph $K_n$ there is a monochromatic connected component of order at least ${n\over k-1}$. In this paper we study an extension of this problem by replacing complete graphs by graphs of large minimum degree. For $k=2$ the authors proved that $\delta(G)\ge{3n\over 4}$ ensures a monochromatic connected component with at least $\delta(G)+1$ vertices in every $2$-coloring of the edges of a graph $G$ with $n$ vertices. This result is sharp, thus for $k=2$ we really need a complete graph to guarantee that one of the colors has a monochromatic connected spanning subgraph. Our main result here is  that for larger values of $k$ the situation is different, graphs of minimum degree $(1-\epsilon_k)n$ can replace complete graphs and still there is a monochromatic connected component of order at least ${n\over k-1}$, in fact $$\delta(G)\ge \left(1 - \frac{1}{1000(k-1)^9}\right)n$$ suffices.Our second result is an improvement of this bound for $k=3$. If the edges of $G$ with  $\delta(G)\geq {9n\over 10}$ are $3$-colored, then there is a monochromatic component of order at least ${n\over 2}$. We conjecture that this can be improved to ${7n\over 9}$ and for general $k$ we conjecture the following: if $k\geq 3$ and  $G$ is a graph of order $n$ such that $\delta(G)\geq \left( 1 - \frac{k-1}{k^2}\right)n$, then in any $k$-coloring of the edges of $G$ there is a monochromatic connected component of order at least ${n\over k-1}$.


10.37236/499 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Ingo Schiermeyer ◽  
Anders Yeo

For a graph $G$, let $\gamma(G)$ denote the domination number of $G$ and let $\delta(G)$ denote the minimum degree among the vertices of $G$. A vertex $x$ is called a bad-cut-vertex of $G$ if $G-x$ contains a component, $C_x$, which is an induced $4$-cycle and $x$ is adjacent to at least one but at most three vertices on $C_x$. A cycle $C$ is called a special-cycle if $C$ is a $5$-cycle in $G$ such that if $u$ and $v$ are consecutive vertices on $C$, then at least one of $u$ and $v$ has degree $2$ in $G$. We let ${\rm bc}(G)$ denote the number of bad-cut-vertices in $G$, and ${\rm sc}(G)$ the maximum number of vertex disjoint special-cycles in $G$ that contain no bad-cut-vertices. We say that a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. Bruce Reed [Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277–295] showed that if $G$ is a graph of order $n$ with $\delta(G) \ge 3$, then $\gamma(G) \le 3n/8$. In this paper, we relax the minimum degree condition from three to two. Let $G$ be a connected graph of order $n \ge 14$ with $\delta(G) \ge 2$. As an application of Reed's result, we show that $\gamma(G) \le \frac{1}{8} ( 3n + {\rm sc}(G) + {\rm bc}(G))$. As a consequence of this result, we have that (i) $\gamma(G) \le 2n/5$; (ii) if $G$ contains no special-cycle and no bad-cut-vertex, then $\gamma(G) \le 3n/8$; (iii) if $G$ is $(C_4,C_5)$-free, then $\gamma(G) \le 3n/8$; (iv) if $G$ is $2$-connected and $d_G(u) + d_G(v) \ge 5$ for every two adjacent vertices $u$ and $v$, then $\gamma(G) \le 3n/8$. All bounds are sharp.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


2014 ◽  
Vol 25 (03) ◽  
pp. 307-329 ◽  
Author(s):  
YOSHIYUKI YAMAMOTO ◽  
KOUICHI HIRATA ◽  
TETSUJI KUBOYAMA

In this paper, we investigate the problem of computing structural sensitive variations of an unordered tree edit distance. First, we focus on the variations tractable by the algorithms including the submodule of a network algorithm, either the minimum cost maximum flow algorithm or the maximum weighted bipartite matching algorithm. Then, we show that both network algorithms are replaceable, and hence the time complexity of computing these variations can be reduced to O(nmd) time, where n is the number of nodes in a tree, m is the number of nodes in another tree and d is the minimum degree of given two trees. Next, we show that the problem of computing the bottom-up distance is MAX SNP-hard. Note that the well-known linear-time algorithm for the bottom-up distance designed by Valiente (2001) computes just a bottom-up indel (insertion-deletion) distance allowing no substitutions.


2021 ◽  
Vol 9 (1) ◽  
pp. 37-52
Author(s):  
Ramón Barral Lijó ◽  
Hiraku Nozawa

Abstract To each colored graph one can associate its closure in the universal space of isomorphism classes of pointed colored graphs, and this subspace can be regarded as a generalized subshift. Based on this correspondence, we introduce two definitions for chaotic (colored) graphs, one of them analogous to Devaney’s. We show the equivalence of our two novel definitions of chaos, proving their topological genericity in various subsets of the universal space.


10.37236/9039 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hannah Guggiari ◽  
Alex Scott

For every $n\in\mathbb{N}$ and $k\geqslant2$, it is known that every $k$-edge-colouring of the complete graph on $n$ vertices contains a monochromatic connected component of order at least $\frac{n}{k-1}$. For $k\geqslant3$, it is known that the complete graph can be replaced by a graph $G$ with $\delta(G)\geqslant(1-\varepsilon_k)n$ for some constant $\varepsilon_k$. In this paper, we show that the maximum possible value of $\varepsilon_3$ is $\frac16$. This disproves a conjecture of Gyárfas and Sárközy.


Sign in / Sign up

Export Citation Format

Share Document