scholarly journals Rainbow Matchings in Properly Edge Colored Graphs

10.37236/649 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Guanghui Wang

Let $G$ be a properly edge colored graph. A rainbow matching of $G$ is a matching in which no two edges have the same color. Let $\delta$ denote the minimum degree of $G$. We show that if $|V(G)|\geq \frac{8\delta}{5}$, then $G$ has a rainbow matching of size at least $\lfloor\frac {3 \delta }{5}\rfloor$. We also prove that if $G$ is a properly colored triangle-free graph, then $G$ has a rainbow matching of size at least $\lfloor\frac {2 \delta }{3}\rfloor$.

10.37236/2443 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Jennifer Diemunsch ◽  
Michael Ferrara ◽  
Allan Lo ◽  
Casey Moffatt ◽  
Florian Pfender ◽  
...  

A rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Wang asked if there is a function $f(\delta)$ such that a properly edge-colored graph $G$ with minimum degree $\delta$ and order at least $f(\delta)$ must have a rainbow matching of size $\delta$. We answer this question in the affirmative; an extremal approach yields that $f(\delta) = 98\delta/23< 4.27\delta$ suffices. Furthermore, we give an $O(\delta(G)|V(G)|^2)$-time algorithm that generates such a matching in a properly edge-colored graph of order at least $6.5\delta$. 


10.37236/475 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Timothy D. LeSaulnier ◽  
Christopher Stocker ◽  
Paul S. Wenger ◽  
Douglas B. West

A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. The color degree of a vertex $v$ is the number of different colors on edges incident to $v$. Wang and Li conjectured that for $k\geq 4$, every edge-colored graph with minimum color degree at least $k$ contains a rainbow matching of size at least $\left\lceil k/2 \right\rceil$. We prove the slightly weaker statement that a rainbow matching of size at least $\left\lfloor k/2 \right\rfloor$ is guaranteed. We also give sufficient conditions for a rainbow matching of size at least $\left\lceil k/2 \right\rceil$ that fail to hold only for finitely many exceptions (for each odd $k$).


10.37236/1381 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Stephan Brandt ◽  
Tomaž Pisanski

The core is the unique homorphically minimal subgraph of a graph. A triangle-free graph with minimum degree $\delta > n/3$ is called dense. It was observed by many authors that dense triangle-free graphs share strong structural properties and that the natural way to describe the structure of these graphs is in terms of graph homomorphisms. One infinite sequence of cores of dense maximal triangle-free graphs was known. All graphs in this sequence are 3-colourable. Only two additional cores with chromatic number 4 were known. We show that the additional graphs are the initial terms of a second infinite sequence of cores.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


2008 ◽  
Vol 17 (1) ◽  
pp. 111-136 ◽  
Author(s):  
OLIVER RIORDAN

Thek-coreof a graphGis the maximal subgraph ofGhaving minimum degree at leastk. In 1996, Pittel, Spencer and Wormald found the threshold λcfor the emergence of a non-trivialk-core in the random graphG(n, λ/n), and the asymptotic size of thek-core above the threshold. We give a new proof of this result using a local coupling of the graph to a suitable branching process. This proof extends to a general model of inhomogeneous random graphs with independence between the edges. As an example, we study thek-core in a certain power-law or ‘scale-free’ graph with a parameterccontrolling the overall density of edges. For eachk≥ 3, we find the threshold value ofcat which thek-core emerges, and the fraction of vertices in thek-core whencis ϵ above the threshold. In contrast toG(n, λ/n), this fraction tends to 0 as ϵ→0.


Filomat ◽  
2011 ◽  
Vol 25 (3) ◽  
pp. 29-42 ◽  
Author(s):  
Shilin Wang ◽  
Zhou Bo ◽  
Nenad Trinajstic

The sum-connectivity index of a simple graph G is defined in mathematical chemistry as R+(G) = ? uv?E(G)(du+dv)?1/2, where E(G) is the edge set of G and du is the degree of vertex u in G. We give a best possible lower bound for the sum-connectivity index of a graph (a triangle-free graph, respectively) with n vertices and minimum degree at least two and characterize the extremal graphs, where n ? 11.


10.37236/1085 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $M$ of edges of a graph $G$ is a matching if no two edges in $M$ are incident to the same vertex. The matching number of $G$ is the maximum cardinality of a matching of $G$. A set $S$ of vertices in $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. If $G$ does not contain $K_{1,3}$ as an induced subgraph, then $G$ is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.


2021 ◽  
Vol 9 (1) ◽  
pp. 37-52
Author(s):  
Ramón Barral Lijó ◽  
Hiraku Nozawa

Abstract To each colored graph one can associate its closure in the universal space of isomorphism classes of pointed colored graphs, and this subspace can be regarded as a generalized subshift. Based on this correspondence, we introduce two definitions for chaotic (colored) graphs, one of them analogous to Devaney’s. We show the equivalence of our two novel definitions of chaos, proving their topological genericity in various subsets of the universal space.


2020 ◽  
Vol 40 (4) ◽  
pp. 1008-1019
Author(s):  
Zhiwei Guo ◽  
Hajo Broersma ◽  
Ruonan Li ◽  
Shenggui Zhang

Abstract A compatible spanning circuit in a (not necessarily properly) edge-colored graph G is a closed trail containing all vertices of G in which any two consecutively traversed edges have distinct colors. Sufficient conditions for the existence of extremal compatible spanning circuits (i.e., compatible Hamilton cycles and Euler tours), and polynomial-time algorithms for finding compatible Euler tours have been considered in previous literature. More recently, sufficient conditions for the existence of more general compatible spanning circuits in specific edge-colored graphs have been established. In this paper, we consider the existence of (more general) compatible spanning circuits from an algorithmic perspective. We first show that determining whether an edge-colored connected graph contains a compatible spanning circuit is an NP-complete problem. Next, we describe two polynomial-time algorithms for finding compatible spanning circuits in edge-colored complete graphs. These results in some sense give partial support to a conjecture on the existence of compatible Hamilton cycles in edge-colored complete graphs due to Bollobás and Erdős from the 1970s.


Sign in / Sign up

Export Citation Format

Share Document