scholarly journals Extremal Problems for Subset Divisors

10.37236/3438 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Tony Huynh

Let $A$ be a set of $n$ positive integers. We say that a subset $B$ of $A$ is a divisor of $A$, if the sum of the elements in $B$ divides the sum of the elements in $A$. We are interested in the following extremal problem. For each $n$, what is the maximum number of divisors a set of $n$ positive integers can have? We determine this function exactly for all values of $n$. Moreover, for each $n$ we characterize all sets that achieve the maximum. We also prove results for the $k$-subset analogue of our problem. For this variant, we determine the function exactly in the special case that $n=2k$. We also characterize all sets that achieve this bound when $n=2k$.  

2021 ◽  
Vol 14 (2) ◽  
pp. 380-395
Author(s):  
Jiramate Punpim ◽  
Somphong Jitman

Triangular numbers have been of interest and continuously studied due to their beautiful representations, nice properties, and various links with other figurate numbers. For positive integers n and l, the nth l-isosceles triangular number is a generalization of triangular numbers defined to be the arithmetic sum of the formT(n, l) = 1 + (1 + l) + (1 + 2l) + · · · + (1 + (n − 1)l).In this paper, we focus on characterizations and identities for isosceles triangular numbers as well as their links with other figurate numbers. Recursive formulas for constructions of isosceles triangular numbers are given together with necessary and sufficient conditions for a positive integer to be a sum of isosceles triangular  numbers. Various identities for isosceles triangular numbers are established. Results on triangular numbers can be viewed as a special case.


2017 ◽  
Vol 13 (09) ◽  
pp. 2253-2264 ◽  
Author(s):  
Minking Eie ◽  
Wen-Chin Liaw ◽  
Yao Lin Ong

For a real number [Formula: see text] and positive integers [Formula: see text] and [Formula: see text] with [Formula: see text], we evaluate the sum of multiple zeta values [Formula: see text] explicitly in terms of [Formula: see text] and [Formula: see text]. The special case [Formula: see text] gives an evaluation of [Formula: see text]. An explicit evaluation of the multiple zeta-star value [Formula: see text] is also obtained, as well as some applications to evaluation of multiple zeta values with even arguments.


1996 ◽  
Vol 39 (3) ◽  
pp. 535-546 ◽  
Author(s):  
Takahiko Nakazi

The author has proved that an outer function in the Hardy space H1 can be factored into a product in which one factor is strongly outer and the other is the sum of two inner functions. In an endeavor to understand better the latter factor, we introduce a class of functions containing sums of inner functions as a special case. Using it, we describe the solutions of extremal problems in the Hardy spaces Hp for 1≦p<∞.


1999 ◽  
Vol 6 (35) ◽  
Author(s):  
Tibor Jordán ◽  
Zoltán Szigeti

Let G = (V +s,E) be a graph and let S = (d1, ..., dp) be a set of positive integers with<br />Sum dj = d(s). An S-detachment splits s into a set of p independent vertices s1, ..., sp with<br />d(sj) = dj, 1 <= j <= p. Given a requirement function r(u, v) on pairs of vertices of V , an<br />S-detachment is called r-admissible if the detached graph G' satisfies lambda_G' (x, y) >= r(x, y)<br />for every pair x, y in V . Here lambda_H(u, v) denotes the local edge-connectivity between u and v<br />in graph H.<br />We prove that an r-admissible S-detachment exists if and only if (a) lambda_G(x, y) >= r(x, y),<br />and (b) lambda_G−s(x, y) >= r(x, y) − Sum |dj/2| hold for every x, y in V .<br />The special case of this characterization when r(x, y) = lambda_G(x, y) for each pair in V was conjectured by B. Fleiner. Our result is a common generalization of a theorem of W. Mader on edge splittings preserving local edge-connectivity and a result of B. Fleiner on detachments preserving global edge-connectivity. Other corollaries include previous results of L. Lov´asz and C.J.St.A. Nash-Williams on edge splittings and detachments, respectively. As a new application, we extend a theorem of A. Frank on local edge-connectivity augmentation to the case when stars of given degrees are added.


1969 ◽  
Vol 21 ◽  
pp. 6-27 ◽  
Author(s):  
Aviezri S. Fraenkel

The following result is well known (as usual, [x]denotes the integral part of x):(A) Let α and β be positive irrational numbers satisfying1Then the sets [nα], [nβ], n= 1, 2, …, are complementary with respect to the set of all positive integers]see, e.g. (1; 2; 4; 5; 6; 7; 8; 10; 13; 14; 15; 16). In some of these references the result, or a special case thereof, is mentioned in connection with Wythoff's game, with or without proof. It appears that Beatty (4) was the originator of the problem.The theorem has a converse, and the following holds:(B) Let α and β be positive. The sets [nα] and [nβ], n = 1, 2, …, are complementary with respect to the set of all positive integers if and only if α and β are irrational, and (1) holds.


10.37236/1182 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Richard A. Brualdi ◽  
Stephen Mellendorf

We consider the following two problems. (1) Let $t$ and $n$ be positive integers with $n\geq t\geq 2$. Determine the maximum number of edges of a graph of order $n$ that contains neither $K_t$ nor $K_{t,t}$ as a subgraph. (2) Let $r$, $t$ and $n$ be positive integers with $n\geq rt$ and $t\geq 2$. Determine the maximum number of edges of a graph of order $n$ that does not contain $r$ disjoint copies of $K_t$. Problem 1 for $n < 2t$ is solved by Turán's theorem and we solve it for $n=2t$. We also solve Problem 2 for $n=rt$.


1981 ◽  
Vol 24 (1) ◽  
pp. 37-41 ◽  
Author(s):  
R. A. Smith ◽  
M. V. Subbarao

Let l and k be positive integers. Then for each integer n ≥ 1, define d(n; l, k) to be the number of (positive) divisors of n which lie in the arithmetic progression I mod k. Note that d(n;1,1) = d(n), the ordinary divisor function.


2012 ◽  
Vol 49 (01) ◽  
pp. 266-279
Author(s):  
Lasse Leskelä ◽  
Harri Varpanen

Juggler's exclusion process describes a system of particles on the positive integers where particles drift down to zero at unit speed. After a particle hits zero, it jumps into a randomly chosen unoccupied site. We model the system as a set-valued Markov process and show that the process is ergodic if the family of jump height distributions is uniformly integrable. In a special case where the particles jump according to a set-avoiding memoryless distribution, the process reaches its equilibrium in finite nonrandom time, and the equilibrium distribution can be represented as a Gibbs measure conforming to a linear gravitational potential.


2018 ◽  
Vol 28 (01) ◽  
pp. 39-56 ◽  
Author(s):  
Jude Buot ◽  
Mikio Kano

Let [Formula: see text] and [Formula: see text] be two disjoint sets of red points and blue points, respectively, in the plane in general position. Assign a weight [Formula: see text] to each red point and a weight [Formula: see text] to each blue point, where [Formula: see text] and [Formula: see text] are positive integers. Define the weight of a region in the plane as the sum of the weights of red and blue points in it. We give necessary and sufficient conditions for the existence of a line that bisects the weight of the plane whenever the total weight [Formula: see text] is [Formula: see text], for some integer [Formula: see text]. Moreover, we look closely into the special case where [Formula: see text] and [Formula: see text] since this case is important to generate a weight-equitable subdivision of the plane. Among other results, we show that for any configuration of [Formula: see text] with total weight [Formula: see text], for some integer [Formula: see text] and odd integer [Formula: see text], the plane can be subdivided into [Formula: see text] convex regions of weight [Formula: see text] if and only if [Formula: see text]. Using the proofs of the main result, we also give a polynomial time algorithm in finding a weight-equitable subdivision in the plane.


1969 ◽  
Vol 16 (4) ◽  
pp. 308-310
Author(s):  
Elvin Rasof

An article in the January 1968 issue of THE ARITHMETIC TEACHER demonstrates an introduction to the teaching of the prime-number concept. Towards the end of this article, mention is made of the number of divisors of a number (we restrict ourselves to the positive integers).In particular, the table shown here.1


Sign in / Sign up

Export Citation Format

Share Document