scholarly journals Decompositions of the Boolean Lattice into Rank-symmetric Chains

10.37236/5328 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
István Tomon

The Boolean lattice $2^{[n]}$ is the power set of $[n]$ ordered by inclusion. A chain $c_{0}\subset\cdots\subset c_{k}$ in $2^{[n]}$ is rank-symmetric, if $|c_{i}|+|c_{k-i}|=n$ for $i=0,\ldots,k$; and it is symmetric, if $|c_{i}|=(n-k)/2+i$. We show that there exist a bijection $$p: [n]^{(\geq n/2)}\rightarrow [n]^{(\leq n/2)}$$ and a partial ordering $<$ on $[n]^{(\geq n/2)}$ satisfying the following properties:$\subset$ is an extension of $<$ on $[n]^{(\geq n/2)}$;if $C\subset [n]^{(\geq n/2)}$ is a chain with respect to $<$, then $p(C)\cup C$ is a rank-symmetric chain in $2^{[n]}$, where $p(C)=\{p(x): x\in C\}$;the poset $([n]^{(\geq n/2)},<)$ has the so called normalized matching property.We show two applications of this result.A conjecture of  Füredi asks if $2^{[n]}$ can be partitioned into $\binom{n}{\lfloor n/2\rfloor}$ chains such that the size of any two chains differ by at most 1. We prove an asymptotic version of this conjecture with the additional condition that every chain in the partition is rank-symmetric: $2^{[n]}$ can be partitioned into $\binom{n}{\lfloor n/2\rfloor}$ rank-symmetric chains, each of size $\Theta(\sqrt{n})$.Our second application gives a lower bound for the number of symmetric chain partitions of $2^{[n]}$. We show that $2^{[n]}$ has at least $2^{\Omega(2^{n}\log n/\sqrt{n})}$ symmetric chain partitions.


10.37236/5073 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Dwight Duffus ◽  
Kyle Thayer

Subgroups of the symmetric group $S_n$ act on $C^n$ (the $n$-fold product $C \times \cdots \times C$ of a chain $C$) by permuting coordinates, and induce automorphisms of the power $C^n$. For certain families of subgroups of $S_n$, the quotients defined by these groups can be shown to have symmetric chain decompositions (SCDs). These SCDs allow us to enlarge the collection of subgroups $G$ of $S_n$ for which the quotient $\mathbf{2}^n/G$ on the Boolean lattice $\mathbf{2}^n$ is a symmetric chain order (SCO). The methods are also used to provide an elementary proof that quotients of powers of SCOs by cyclic groups are SCOs.



1987 ◽  
Vol 52 (3) ◽  
pp. 817-818 ◽  
Author(s):  
Randall Dougherty

A subset of the Cantor space ω2 is called monotone iff it is closed upward under the partial ordering ≤ defined by x ≤ y iff x(n) ≤ y(n) for all n ∈ ω. A set is -positive (-positive) iff it is monotone and -positive set is a countable union of -positive sets; a -positive set is a countable intersection of -positive sets. (See Cenzer [2] for background information on these concepts.) It is clear that any -positive set is and monotone; the converse holds for n ≤ 2 [2] and was conjectured by Dyck to hold for greater n. In this note, we will disprove this conjecture by giving examples of monotone sets (for n ≥ 3) which are not even -positive.First we note a few isomorphisms. The space (ω2, ≤) is isomorphic to the space (ω2 ≥), so instead of monotone and positive sets we may construct hereditary and negative sets (the analogous notions with “closed upward” replaced by “closed downward”). Also, (ω2, ≤) is isomorphic to ((ω), ⊆), where denotes the power set operator, or to ((S), ⊆) for any countably infinite set S.In order to remove extraneous notation from the proofs, we state the results in an abstract form (whose generality is deceptive).



2019 ◽  
Vol 23 ◽  
pp. 739-769
Author(s):  
Paweł Lorek

For a given absorbing Markov chain X* on a finite state space, a chain X is a sharp antidual of X* if the fastest strong stationary time (FSST) of X is equal, in distribution, to the absorption time of X*. In this paper, we show a systematic way of finding such an antidual based on some partial ordering of the state space. We use a theory of strong stationary duality developed recently for Möbius monotone Markov chains. We give several sharp antidual chains for Markov chain corresponding to a generalized coupon collector problem. As a consequence – utilizing known results on the limiting distribution of the absorption time – we indicate separation cutoffs (with their window sizes) in several chains. We also present a chain which (under some conditions) has a prescribed stationary distribution and its FSST is distributed as a prescribed mixture of sums of geometric random variables.



1976 ◽  
Vol 21 (2) ◽  
pp. 234-240
Author(s):  
Richard D. Byrd ◽  
Roberto A. Mena

A chain C in a distributive lattice L is called strongly maximal in L if and only if for any homomorphism φ of L onto a distributive lattice K, the chain (Cφ)0 is maximal in K, where (Cφ)0 = Cφ if 0 ∉ K, and (Cφ)0 = Cφ ∪ {0}, otherwise. Gratzer (1971, Theorem 28) states that if B is a generalized Boolean lattice R-generated by L and C is a chain in L, then C R-generates B if and only if C is strongly maximal in L. In this note (Theorem 4.6), we prove the following assertion, which is not far removed from Gratzer's statement: let B be a generalized Boolean lattice R-generated by L and C be a chain in L. If 0 ∈ L, then C generates B if and only if C is strongly maximal in L. If 0 ∉ L, then C generates B if and only if C is strongly maximal in L and [C)L = L. In Section 5 (Example 5.1) a counterexample to Gratzer's statement is provided.



Author(s):  
Peter Harremoës

We study the existence or absence of non-Shannon inequalities for variables that are related by functional dependencies. Although the power-set on four variables is the smallest Boolean lattice with non-Shannon inequalities there exist lattices with many more variables without non-Shannon inequalities. We search for conditions that excludes the existence of non-Shannon inequalities. It is demonstrated that planar modular lattices cannot have non-Shannon inequalities. The existence of non-Shannon inequalities is related to the question of whether a lattice is isomorphic to a lattice of subgroups of a group.



Author(s):  
Peter Harremoës

We study the existence or absence of non-Shannon inequalities for variables that are related by functional dependencies. Although the power-set on four variables is the smallest Boolean lattice with non-Shannon inequalities there exist lattices with many more variables without non-Shannon inequalities. We search for conditions that excludes the existence of non-Shannon inequalities. It is demonstrated that planar modular lattices cannot have non-Shannon inequalities. The existence of non-Shannon inequalities is related to the question of whether a lattice is isomorphic to a lattice of subgroups of a group.



2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Alexander Shramchenko ◽  
Vasilisa Shramchenko

We propose a procedure of constructing new block designs starting from a given one by looking at the intersections of its blocks with various sets and grouping those sets according to the structure of the intersections. We introduce a symmetric relationship of friendship between block designs built on a set V and consider families of block designs where all designs are friends of each other, the so-called friendly families. We show that a friendly family admits a partial ordering. Furthermore, we exhibit a map from the power set of V, partially ordered by inclusion, to a friendly family of a particular type which preserves the partial order.



2009 ◽  
Vol 309 (17) ◽  
pp. 5278-5283 ◽  
Author(s):  
Zongliang Jiang ◽  
Carla D. Savage


1996 ◽  
Vol 75 (1) ◽  
pp. 44-54 ◽  
Author(s):  
Béla Bajnok ◽  
Shahriar Shahriari


1997 ◽  
Vol 6 (2) ◽  
pp. 231-245 ◽  
Author(s):  
FRANK VOGT ◽  
BERND VOIGT

It has been known for several years that the lattice of subspaces of a finite vector space has a decomposition into symmetric chains, i.e. a decomposition into disjoint chains that are symmetric with respect to the rank function of the lattice. This paper gives a positive answer to the long-standing open problem of providing an explicit construction of such a symmetric chain decomposition for a given lattice of subspaces of a finite (dimensional) vector space. The construction is done inductively using Schubert normal forms and results in a bracketing algorithm similar to the well-known algorithm for Boolean lattices.



Sign in / Sign up

Export Citation Format

Share Document