scholarly journals Sets of Integers that do not Contain Long Arithmetic Progressions

10.37236/546 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Kevin O'Bryant

Combining ideas of Rankin, Elkin, Green & Wolf, we give constructive lower bounds for $r_k(N)$, the largest size of a subset of $\{1,2,\dots,N\}$ that does not contain a $k$-element arithmetic progression: For every $\epsilon>0$, if $N$ is sufficiently large, then $$r_3(N) \geq N \left(\frac{6\cdot 2^{3/4} \sqrt{5}}{e \,\pi^{3/2}}-\epsilon\right) \exp\left({-\sqrt{8\log N}+\tfrac14\log\log N}\right),$$ $$r_k(N) \geq N \, C_k\,\exp\left({-n 2^{(n-1)/2} \sqrt[n]{\log N}+\tfrac{1}{2n}\log\log N}\right),$$ where $C_k>0$ is an unspecified constant, $\log=\log_2$, $\exp(x)=2^x$, and $n=\lceil{\log k}\rceil$. These are currently the best lower bounds for all $k$, and are an improvement over previous lower bounds for all $k\neq4$.

1999 ◽  
Vol 60 (1) ◽  
pp. 21-35
Author(s):  
Tom C. Brown ◽  
Bruce M. Landman

A generalisation of the van der Waerden numbers w(k, r) is considered. For a function f: Z+ → R+ define w(f, k, r) to be the least positive integer (if it exists) such that for every r-coloring of [1, w(f, k, r)] there is a monochromatic arithmetic progression {a + id: 0 ≤ i ≤ k −1} such that d ≥ f(a). Upper and lower bounds are given for w(f, 3, 2). For k > 3 or r > 2, particular functions f are given such that w(f, k, r) does not exist. More results are obtained for the case in which f is a constant function.


2014 ◽  
Vol 57 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Daniel M. Kane ◽  
Scott Duke Kominers

AbstractFor relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1..., un) of the finite arithmetic progression . We derive new lower bounds on Ln that improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp as n → ∞.


2008 ◽  
Vol 51 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ernie Croot

AbstractHow few three-term arithmetic progressions can a subset S ⊆ ℤN := ℤ/Nℤ have if |S| ≥ υN (that is, S has density at least υ)? Varnavides showed that this number of arithmetic progressions is at least c(υ)N2 for sufficiently large integers N. It is well known that determining good lower bounds for c(υ) > 0 is at the same level of depth as Erdös's famous conjecture about whether a subset T of the naturals where Σn∈T 1/n diverges, has a k-term arithmetic progression for k = 3 (that is, a three-term arithmetic progression).We answer a question posed by B. Green about how this minimial number of progressions oscillates for a fixed density υ as N runs through the primes, and as N runs through the odd positive integers.


10.37236/925 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
P. R. Herwig ◽  
M.J.H. Heule ◽  
P. M. Van Lambalgen ◽  
H. Van Maaren

We present the Cyclic Zipper Method, a procedure to construct lower bounds for Van der Waerden numbers. Using this method we improved seven lower bounds. For natural numbers $r$, $k$ and $n$ a Van der Waerden certificate $W(r,k,n)$ is a partition of $\{1, \ldots, n\}$ into $r$ subsets, such that none of them contains an arithmetic progression of length $k$ (or larger). Van der Waerden showed that given $r$ and $k$, a smallest $n$ exists - the Van der Waerden number $W(r,k)$ - for which no certificate $W(r,k,n)$ exists. In this paper we investigate Van der Waerden certificates which have certain symmetrical and repetitive properties. Surprisingly, it shows that many Van der Waerden certificates, which must avoid repetitions in terms of arithmetic progressions, reveal strong regularities with respect to several other criteria. The Cyclic Zipper Method exploits these regularities. To illustrate these regularities, two techniques are introduced to visualize certificates.


10.37236/7917 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
József Balogh ◽  
Mikhail Lavrov ◽  
George Shakan ◽  
Adam Zsolt Wagner

The Van der Waerden number $W(k,r)$ denotes the smallest $n$ such that whenever $[n]$ is $r$–colored there exists a monochromatic arithmetic progression of length $k$. Similarly, the Hilbert cube number $h(k,r)$ denotes the smallest $n$ such that whenever $[n]$ is $r$–colored there exists a monochromatic affine $k$–cube, that is, a set of the form$$\left\{x_0 + \sum_{b \in B} b : B \subseteq A\right\}$$ for some $|A|=k$ and $x_0 \in \mathbb{Z}$. We show the following relation between the Hilbert cube number and the Van der Waerden number. Let $k \geqslant 3$ be an integer. Then for every $\epsilon >0$, there is a $c > 0$ such that $$h(k,4) \geqslant \min\{W(\lfloor c k^2\rfloor, 2), 2^{k^{2.5-\epsilon}}\}.$$ Thus we improve upon state of the art lower bounds for $h(k,4)$ conditional on $W(k,2)$ being significantly larger than $2^k$. In the other direction, this shows that if the Hilbert cube number is close to its state of the art lower bounds, then $W(k,2)$ is at most doubly exponential in $k$. We also show the optimal result that for any Sidon set $A \subset \mathbb{Z}$, one has $$\left|\left\{\sum_{b \in B} b : B \subseteq A\right\}\right| = \Omega( |A|^3) .$$


1968 ◽  
Vol 11 (3) ◽  
pp. 409-414 ◽  
Author(s):  
E.R. Berlekamp

For k ≥2, t ≥2, let W(k, t) denote the least integer m such that in every partition of m consecutive integers into k sets, atleast one set contains an arithmetic progression of t+1 terms. This paper presents a construction which improves the best previously known lower bounds on W(k, t) for small k and large t.


2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


2001 ◽  
Vol 32 (4) ◽  
pp. 335-341
Author(s):  
Tom C. Brown ◽  
Jau-Shyong Peter Shiue

In this expository note, we discuss the celebrated theorem known as ``van der Waerden's theorem on arithmetic progressions", the history of work on upper and lower bounds for the function associated with this theorem, a number of generalizations, and some open problems.


2008 ◽  
Vol 78 (3) ◽  
pp. 431-436 ◽  
Author(s):  
XUE-GONG SUN ◽  
JIN-HUI FANG

AbstractErdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.


Sign in / Sign up

Export Citation Format

Share Document