scholarly journals Lattices Related to Extensions of Presentations of Transversal Matroids

10.37236/5466 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Joseph E. Bonin

For a presentation $\mathcal{A}$ of a transversal matroid $M$, we study the ordered set $T_{\mathcal{A}}$ of single-element transversal extensions of $M$ that have presentations that extend $\mathcal{A}$; extensions are ordered by the weak order.  We show that $T_{\mathcal{A}}$ is a distributive lattice, and that each finite distributive lattice is isomorphic to $T_{\mathcal{A}}$ for some presentation $\mathcal{A}$ of some transversal matroid $M$. We show that $T_{\mathcal{A}}\cap T_{\mathcal{B}}$, for any two presentations $\mathcal{A}$ and $\mathcal{B}$ of $M$, is a sublattice of both $T_{\mathcal{A}}$ and $T_{\mathcal{B}}$. We prove sharp upper bounds on $|T_{\mathcal{A}}|$ for presentations $\mathcal{A}$ of rank less than $r(M)$ in the order on presentations; we also give a sharp upper bound on $|T_{\mathcal{A}}\cap T_{\mathcal{B}}|$. The main tool we introduce to study $T_{\mathcal{A}}$ is the lattice $L_{\mathcal{A}}$ of closed sets of a certain closure operator on the lattice of subsets of $\{1,2,\ldots,r(M)\}$.


1970 ◽  
Vol 13 (1) ◽  
pp. 115-118 ◽  
Author(s):  
G. Bruns ◽  
H. Lakser

A (meet-) semilattice is an algebra with one binary operation ∧, which is associative, commutative and idempotent. Throughout this paper we are working in the category of semilattices. All categorical or general algebraic notions are to be understood in this category. In every semilattice S the relationdefines a partial ordering of S. The symbol "∨" denotes least upper bounds under this partial ordering. If it is not clear from the context in which partially ordered set a least upper bound is taken, we add this set as an index to the symbol; for example, ∨AX denotes the least upper bound of X in the partially ordered set A.



2020 ◽  
Vol 39 (3) ◽  
pp. 2831-2843
Author(s):  
Peng He ◽  
Xue-Ping Wang

Let D be a finite distributive lattice with n join-irreducible elements. It is well-known that D can be represented as the congruence lattice of a rectangular lattice L which is a special planer semimodular lattice. In this paper, we shall give a better upper bound for the size of L by a function of n, improving a 2009 result of G. Grätzer and E. Knapp.



1996 ◽  
Vol 321 ◽  
pp. 335-370 ◽  
Author(s):  
R. R. Kerswell

Rigorous upper bounds on the viscous dissipation rate are identified for two commonly studied precessing fluid-filled configurations: an oblate spheroid and a long cylinder. The latter represents an interesting new application of the upper-bounding techniques developed by Howard and Busse. A novel ‘background’ method recently introduced by Doering & Constantin is also used to deduce in both instances an upper bound which is independent of the fluid's viscosity and the forcing precession rate. Experimental data provide some evidence that the observed viscous dissipation rate mirrors this behaviour at sufficiently high precessional forcing. Implications are then discussed for the Earth's precessional response.



Author(s):  
Indranil Biswas ◽  
Ajneet Dhillon ◽  
Nicole Lemire

AbstractWe find upper bounds on the essential dimension of the moduli stack of parabolic vector bundles over a curve. When there is no parabolic structure, we improve the known upper bound on the essential dimension of the usual moduli stack. Our calculations also give lower bounds on the essential dimension of the semistable locus inside the moduli stack of vector bundles of rank r and degree d without parabolic structure.



1998 ◽  
Vol 41 (3) ◽  
pp. 290-297 ◽  
Author(s):  
G. Grätzer ◽  
H. Lakser ◽  
E. T. Schmidt

AbstractWe prove that every finite distributive lattice can be represented as the congruence lattice of a finite (planar) semimodular lattice.





10.37236/5980 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Samuel Braunfeld

In Homogeneous permutations, Peter Cameron [Electronic Journal of Combinatorics 2002] classified the homogeneous permutations (homogeneous structures with 2 linear orders), and posed the problem of classifying the homogeneous $n$-dimensional permutation structures (homogeneous structures with $n$ linear orders) for all finite $n$. We prove here that the lattice of $\emptyset$-definable equivalence relations in such a structure can be any finite distributive lattice, providing many new imprimitive examples of homogeneous finite dimensional permutation structures. We conjecture that the distributivity of the lattice of $\emptyset$-definable equivalence relations is necessary, and prove this under the assumption that the reduct of the structure to the language of $\emptyset$-definable equivalence relations is homogeneous. Finally, we conjecture a classification of the primitive examples, and confirm this in the special case where all minimal forbidden structures have order 2. 



1993 ◽  
Vol 47 (2) ◽  
pp. 321-332 ◽  
Author(s):  
J-C. Renaud ◽  
L.F. Fitina

In 1991 Renaud defined a boundary function φ(n) for union-closed sets, and evaluated it to n = 17. Also in 1991, Mallows examined a sequence a(n) defined recursively by Conway in 1988.Investigation of some properties of strictly reduced ordered power sets, a class of union-closed sets, leads to the conclusion that a(n + 1) is an upper bound for φ(n), and the union-closed sets conjecture holds if the conjecture φ(n) = a(n + 1) is valid.



1994 ◽  
Vol 59 (3) ◽  
pp. 977-983 ◽  
Author(s):  
Alistair H. Lachlan ◽  
Robert I. Soare

AbstractWe settle a question in the literature about degrees of models of true arithmetic and upper bounds for the arithmetic sets. We prove that there is a model of true arithmetic whose degree is not a uniform upper bound for the arithmetic sets. The proof involves two forcing constructions.



1971 ◽  
Vol 23 (5) ◽  
pp. 866-874 ◽  
Author(s):  
Raymond Balbes

For a distributive lattice L, let denote the poset of all prime ideals of L together with ∅ and L. This paper is concerned with the following type of problem. Given a class of distributive lattices, characterize all posets P for which for some . Such a poset P will be called representable over. For example, if is the class of all relatively complemented distributive lattices, then P is representable over if and only if P is a totally unordered poset with 0, 1 adjoined. One of our main results is a complete characterization of those posets P which are representable over the class of distributive lattices which are generated by their meet irreducible elements. The problem of determining which posets P are representable over the class of all distributive lattices appears to be very difficult.



Sign in / Sign up

Export Citation Format

Share Document